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■ Abstract Turbulence is ubiquitous in atmospheric clouds, which have enormous
turbulence Reynolds numbers owing to the large range of spatial scales present. In-
deed, the ratio of energy-containing and dissipative length scales is on the order of 105

for a typical convective cloud, with a corresponding large-eddy Reynolds number on
the order of 106 to 107. A characteristic trait of high-Reynolds-number turbulence is
strong intermittency in energy dissipation, Lagrangian acceleration, and scalar gradi-
ents at small scales. Microscale properties of clouds are determined to a great extent by
thermodynamic and fluid-mechanical interactions between droplets and the surround-
ing air, all of which take place at small spatial scales. Furthermore, these microscale
properties of clouds affect the efficiency with which clouds produce rain as well as
the nature of their interaction with atmospheric radiation and chemical species. It is
expected, therefore, that fine-scale turbulence is of direct importance to the evolution
of, for example, the droplet size distribution in a cloud. In general, there are two levels
of interaction that are considered in this review: (a) the growth of cloud droplets by
condensation and (b) the growth of large drops through the collision and coalescence
of cloud droplets. Recent research suggests that the influence of fine-scale turbulence
on the condensation process may be limited, although several possible mechanisms
have not been studied in detail in the laboratory or the field. There is a growing con-
sensus, however, that the collision rate and collision efficiency of cloud droplets can
be increased by turbulence-particle interactions. Adding strength to this notion is the
growing experimental evidence for droplet clustering at centimeter scales and below,
most likely due to strong fluid accelerations in turbulent clouds. Both types of interac-
tion, condensation and collision-coalescence, remain open areas of research with many
possible implications for the physics of atmospheric clouds.

1. INTRODUCTION

1.1. Broader Implications of Cloud Physics

When viewed from space, the Earth reveals much more cloud and ocean than earth.
Indeed, the presence of clouds is a crucial aspect of hydrological and radiative
balances necessary for the existence of life on Earth. Furthermore, a perusal of
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art in the world’s great museums and galleries reveals that the qualitative features
of clouds have not undergone any radical change over the last few hundred years.
Yet there is evidence that the formation, extent, and duration of clouds can be
altered by anthropogenic or biological influences. In response to these facts, “the
factors controlling the distribution of clouds and their radiative characteristics” is
included in the Intergovernmental Panel on Climate Change (IPCC 1996) list of
“most urgent scientific problems requiring attention.”

One of the intriguing (and difficult) aspects of the cloud-climate problem is
the fundamental importance of processes occurring on extremely small scales in
determining the macroscopic properties of clouds, including their lifetime, extent,
precipitation efficiency, and radiative properties. Thus, if we are to understand the
role of clouds in human affairs and the global environment, we are obliged to
increase our understanding of processes occurring on seemingly unrelated scales,
such as cloud-droplet activation and the subsequent temporal and spatial evolution
of cloud-particle size distributions. The formation of cloud droplets on individ-
ual aerosol particles of varying chemical composition, the subsequent growth by
vapor condensation, and then the collision and coalescence of cloud droplets, all
processes occurring on micrometer to millimeter scales, eventually take part in de-
termining the macroscopic properties of a cloud such as its precipitation efficiency
and its optical properties.

Even casual observations of convective clouds, such as that shown in Figure 1,
reveal that such clouds are turbulent, are inherently three dimensional, tend to

Figure 1 A turbulent cloud, illustrating the great range of spatial scales
and the sharp boundaries characteristic of such a system. Similarly, a series of
pictures taken in succession would illustrate the large range of temporal scales.
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Figure 2 A traverse through a cumulus cloud. The top panel shows the vertical
velocity, the middle panel shows droplet number density, and the bottom panel shows
mean droplet radius. Note the sharp edges characteristic of the cloud-environment
mixing process. Note also that to a large extent the mean radius fluctuates between
a constant value and zero, implying that dry and cloudy air are largely segregated
during much of the mixing process. Data from the SCMS field experiment, courtesy of
J.-L. Brenguier, Meteo-France.

have sharp transitions from cloudy to clear air, evolve over a huge range of
spatial and temporal scales, and consist of highly dispersed condensed-phase water.
Quantitative measurements, such as those shown in Figure 2, confirm this general
picture. These features lead to at least four characteristics of clouds that determine
how they interact with other components of the Earth system. (a) Clouds represent
the highest mass concentration of any atmospheric aerosol (Twomey 1977). In
addition, they possess an enormous surface area and therefore are of great impor-
tance for heterogeneous chemistry and aerosol processing and removal. (b) Clouds
are extremely effective in their interaction with visible and infrared radiation. In
the visible range, light is redistributed mainly by scattering, and in the infrared,
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clouds are close to being black bodies and therefore modify the transfer of infrared
(terrestrial) radiation through the atmosphere (Twomey 1977). (c) Clouds can be-
come “colloidally unstable” and form raindrops large enough to fall to the ground
and therefore form a fundamental link in the hydrologic cycle. (d) Clouds play a
crucial role in transporting water and energy in the atmosphere, especially vertical
transport.

Each of these items is inherently linked to the formation and evolution of cloud-
droplet size distributions. As a result, understanding how the size distribution varies
spatially and temporally in a cloud is one of the major challenges in the atmospheric
sciences. The role of fine-scale turbulence in the evolution of cloud-droplet size
distributions is the focus of this review.

1.2. Scope: Turbulence-Cloud Interactions on Small Scales

It was realized during the infancy of cloud physics as a discipline that turbulence
likely would play a role in the evolution of a cloud, both at macro- and microscales
(see Vohl et al. 1999, Section 1, for a brief summary of some of the earliest
references). Today, the role of turbulence in cloud formation and dissipation is a
major research problem, with in situ, computational, laboratory, and theoretical
tools being applied to all scales of the problem. Although it is somewhat artificial
to separate “large” and “small” scales in a cloud, we do so here simply to limit the
scope of this review. Questions of large-scale entrainment and turbulent fluxes of
energy and water vapor, although of great interest, are not addressed here. Instead,
we focus on the interaction of turbulence with particles at the smallest scales in a
cloud. This is an active area of research that lies at the interface between turbulent
fluid mechanics and cloud physics, and the purpose of this review is not to give a
thorough overview of either turbulence or the microscale physics of clouds, nor is
it to create a false impression that the major problems have been solved. Rather, the
intention is to provide an introduction to the basic problems lying at this interface of
two fields and the current and recent research aimed at answering those questions,
as well as some thoughts on possible future directions. Finally, again for the sake of
limiting the scope of this review, we focus on “warm clouds,” meaning clouds that
contain only liquid water (noting, of course, that the fundamental physics applies
to more complex situations where ice particles are present).

A physically based justification for limiting our view to interactions that take
place primarily at the smallest spatial scales in a cloud exists. These scales are fun-
damental to the microscale physics of droplet growth, which determines spatial and
temporal variations in the droplet size distribution. In turn, the droplet size distribu-
tion is the defining characteristic of a cloud, determining how the cloud interacts
with electromagnetic radiation, how fast precipitation will form, and so forth.
For example, droplet collisions and the relevant fluid motions influencing their
efficiency occur on scales on the order of 10−3 m or smaller. Similarly, the local
thermodynamic environment of a cloud droplet, which determines the rate at which
the droplet grows owing to condensation, is characterized by spatial scales on the
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order of 10−3 or smaller. Fundamentally, these scales are determined by molecular
diffusivities for mass, energy, and momentum transport, all of which have similar
magnitudes in a cloud. The same quantities determine the dissipation scale of a
turbulent flow, also on the order of 10−3 m for a cloud, so it is no coincidence
that these scales have similar magnitudes and that the processes interact. Always
keeping in mind that the smallest scales are linked inherently to the macroscopic
properties of the cloud, we focus on the small scales to understand the physics of
those interactions.

We note that several other recent reviews covering various aspects of cloud-
turbulence interactions are well worth consulting for their differing perspectives.
The problem of rain formation in warm clouds is carefully reviewed by Beard &
Ochs (1993), with many topics considered, including the role of turbulence. The
physics of entrainment of dry air into clouds and its relevance to cloud evolution
is reviewed by Blyth (1993). A broad review of turbulence effects on the growth
of cloud droplets aimed primarily at the cloud physics community is that by Jonas
(1996). Recent advances made in understanding the role of particle inertia in the
microscale physics of clouds are reviewed by Pinsky & Khain (1997b). A review
by Vaillancourt & Yau (2000) covers aspects of cloud particle interactions with
turbulence, especially “preferential concentration” and the overlap with ongoing
research in the broader area of multiphase flows. Finally, Lamb (2001) gives a
concise introduction to the amazing breadth of the “rain production” problem.

Because this review is meant for a broad audience with readers beyond the
boundaries of cloud physics, in Section 2 we give a brief overview of the essential
physics of cloud formation and the processes governing the spatial and temporal
evolution of the cloud-droplet size distribution. In Section 3 we address the nature
of turbulence in clouds, and we discuss how clouds are described as random
systems containing a countable scalar constituent (cloud droplets). The equation
of motion for a cloud droplet and discussions of mechanisms by which number
density fluctuations can arise are presented in Section 4. Recent research on the
role of fine-scale turbulence in the condensation growth process is described in
Section 5, and on the collision growth process in Section 6. Measurements of cloud
properties at sub-m scales are discussed in Section 7, and some final remarks on
outstanding problems are given in Section 8.

2. THE CLOUD-DROPLET SIZE DISTRIBUTION

Cloud droplets initially form on preexisting aerosol particles that serve as con-
densation nuclei. As long as a supersaturated environment is maintained—for
example, as a result of the continual cooling of air doing work against Earth’s
gravitational field as it rises—the cloud droplets formed on individual aerosol par-
ticles will continue to grow by water vapor condensation. At this point, the cloud is
sometimes said to be colloidally stable because of the relatively small growth rates
typically attained owing to condensation alone. To achieve the explosive growth
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necessary to produce particles large enough to fall from a cloud during the extent
of its lifetime, cloud droplets must begin to collide and coalesce. Identifying how
this process begins and the rate at which it occurs is one of the major challenges
of cloud physics. Precipitation formation is just one example of a process that is
sensitive to spatial and temporal variations of the cloud-droplet size distribution.
The essential processes governing the size distribution evolution are discussed in
this section to provide background for reviewing the role of fine-scale turbulence
in these processes.

If a single droplet is chosen at random from a volume containing many cloud
droplets,p(r ) is the probability of choosing a droplet with radius betweenr and
r + dr (e.g., Jameson & Kostinski 2001, Seinfeld & Pandis 1998);p(r ) is a prob-
ability density, properly normalized such that

∫ ∞
0 p(r )dr = 1. The cloud-droplet

size distribution is defined asf (r ) = np(r ), wheren is the number density of
droplets (of all radii) in the volume. Because cloud volumes and (of greater rele-
vance) the sampling volumes of instruments are finite, the size distributionf (r ) can
only be estimated, and the ability to do this depends on the statistical homogeneity
(or stationarity) of the cloud (e.g., Jameson & Kostinski 2001, Liu & Hallett 1998).

Perhaps the main challenge of cloud physics is to determinef (r ) as a function
of position and time. This is made more complex when the thermodynamic phase
(liquid water versus ice) is taken into consideration, but here we focus on the liquid
phase only. The dynamic equation for the droplet size distribution, given several
assumptions that are discussed later, can be written as

∂ f (r )

∂t
= J − ∂[ṙ f (r )]

∂r
−

∫ ∞

0
κ(r, r ′) f (r ) f (r ′) dr ′

+ 1

2

∫ r

0

(
1− r ′3

r 3

)−2/3

κ((r 3 − r ′3)1/3, r ′) f ((r 3 − r ′3)1/3) f (r ′) dr ′. (1)

This is, essentially, a form of the Boltzmann transport equation (e.g., Reif 1965).
We consider the physical meaning of each term separately. The first term on the
right side is a particle source term, written as a nucleation (or activation) rateJ. The
second term can be expanded into−ṙ ∂ f (r )

∂r , which is the shift inf (r ) due to droplet
growth by condensation, and− f (r ) ∂ ṙ

∂r , which represents the tendency for a size
distribution to become narrower as condensation growth occurs (see Equation 2).
The condensation growth rate for a single droplet is obtained by considering a dif-
fusive flux of water vapor from the surrounding air to the spherical surface of the
droplet and the resulting energy flux from the droplet surface to the surrounding
air due to the large enthalpy of vaporization of water. These fluxes are coupled by
conservation of energy and the Clausius-Clapeyron equation relating the droplet
temperature to its equilibrium vapor pressure (e.g., Rogers & Yau 1989). For suf-
ficiently large droplets and the small supersaturations that typically exist in the
atmosphere, the droplet growth rate is

dr

dt
= γ

s

r
, (2)
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whereγ is a function of environmental conditions such as temperature. Supersatu-
ration is defined ass ≡ pv/p∗

v − 1, wherepv is the vapor pressure of water andp∗
v is

theequilibriumvapor pressure of water. Especially relevant to the discussion here
is that the droplet growth rate is inversely proportional to the droplet radius. It is
this dependence that forces the term− f (r ) ∂ ṙ

∂r to be positive, leading to a continual
narrowing of the droplet size distributionf (r) during condensation growth.

Supersaturation is directly related to the Gibbs free energy difference between
the vapor and condensed phases and therefore is the fundamental driver of droplet
growth. The time dependence of supersaturation in a volume of cloud is given by

ds

dt
= ϕuz − s

τs
. (3)

The derivation of Equation 3 is based on equations for conservation of energy and
conservation of mass (water), as well as the droplet growth equation, the hydrostatic
equation, and the Clausius-Clapeyron equation (e.g., Rogers & Yau 1989). The
first term on the right side is the source of supersaturation due to vertical motion in
a gravitational field, withϕ being a function of the vertical profile of temperature
and the saturated adiabatic lapse rate. The second term on the right side is the loss
due to droplet growth, with

τs ∝
(∫ ∞

0
f (r )r dr

)−1

. (4)

τ s is the phase relaxation time and represents the timescale for relaxation tos = 0
in the absence of the source termϕuz. If uz is constant, Equation 3 can be solved
for a quasi-steady-state supersaturations = ϕuzτs, which is reached when the
total number density of droplets is constant (no cloud-droplet activation) and the
mean radius changes slowly in time (owing to condensation growth).

The portion of Equation 1 that deals with collision and coalescence of droplets
(third and fourth terms on the right side) is referred to variously as the kinetic equa-
tion, the coagulation equation, or the stochastic collection equation. The latter is
somewhat of a misnomer because the equation always results in the same droplet
size distribution at a given time when started with identical initial conditions. It
does, however, account for the discreteness of the collision-coalescence process
and therefore is a significant improvement over models based on the assumption
of a continuous droplet phase (continuous collection equation; e.g., Rogers & Yau
1989). It has been pointed out that the kinetic equation does not account for corre-
lations among droplets, such as exists in a poorly mixed cloud (e.g., Bayewitz et al.
1974). As noted by Bayewitz and coworkers (1974), this is especially crucial for
clouds, where the rate process is sensitive to very small numbers of large droplets
that may not be uniformly distributed in the cloud. An approach for including such
droplet correlations is discussed in Section 6, but this is an outstanding problem
that remains to be solved in a completely satisfactory way.

The implicit assumption of zero correlations in the collision-coalescence por-
tion of Equation 1 can be revealed as follows: The expected time for any given
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dropletr to experience a collision with another dropletr ′ is τ = (nr ′κ(r, r ′))−1,
wherenr ′ is the number density of droplets of sizer ′ andκ(r, r ′) is the collision
kernel, the exact functional form depending on the physical mechanism causing
the collisions. (Typically, the combination of collision and coalescence is referred
to as “collection,” makingκ the collection kernel, but for simplicity we use only
the term collision.)τ is exactly analogous to the collision time in kinetic theory
(e.g., Reif 1965), and when it is assumed that droplets are distributed with uniform
probability, the probability density of collision times is

p(t) = 1

τ
exp

(
− t

τ

)
. (5)

In other words, when no correlations in droplet position exist the probability of
collision is independent of the past history of the droplet and therefore is expo-
nentially distributed (Reif 1965, Section 12.1). After each collision,τ (r) must be
recalculated because the droplet radius has changed. The collision kernel has the
form κ(r, r ′) = π (r 2 + r ′2)E|vr − vr ′ |, again analogous to the kinetic theory of
molecules (Reif 1965, Section 12.2), but in which an efficiencyEhas been included
to account for deviations from the hard sphere collision cross-section. Finally, when
nr droplets are considered instead of just one, the total collision rate (number of
collisions per time, per volume) isNc = nr nr ′κ(r, r ′). Then2 dependence, which
can be seen in Equation 1 as anf 2 dependence, is a direct result of the assump-
tion of droplets being distributed with uniform probability (i.e., the probability of
finding a given number of droplets in a volume obeys the Poisson pdf).

Collision kernels can be derived for many scenarios, including Brownian motion
(e.g., Seinfeld & Pandis 1998), turbulent shear flows (Saffman & Turner 1956), and
gravitational sedimentation (e.g., Rogers & Yau 1989). Gravitational coalescence,
where a droplet of sizer falls through a quiescent fluid overtaking smaller droplets
of sizer ′, is thought to be the most effective mechanism for cloud droplets (e.g.,
Pruppacher & Klett 1997, Seinfeld & Pandis 1998). We note, however, that results
discussed in Section 6 may lead to changes in this conclusion. For gravitational
coalescence, the collision kernel grows approximately asr6 for r between 10 and
50 µm (Pruppacher & Klett 1997, Sections 15.1, 15.2). It is clear, therefore, that
the collision timeτ (r) decreases extremely rapidly asr increases, making the pro-
cess of collision-coalescence quite sensitive to the exact droplet size distribution
f (r). Furthermore, ther6 dependence leads to a (continuous) droplet growth rate
with the approximate functional dependencedr/dt ∝ r 4, whereas the condensa-
tion growth rate varies asdr/dt ∝ r −1. So we see that there will be a transition
from droplet growth dominated by condensation in the earliest stages of cloud
development (smallr) to growth dominated by collision and coalescence for the
fraction of droplets that reach a sufficiently large radius first. An example of the re-
sulting explosive growth when the collision-coalescence process begins is given in
Figure 3.

Based on simple mass ratios (cloud droplets versus rain droplets), only
approximately one in 106 droplets must grow large enough to initiate the
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Figure 3 Illustration of the evolution of a droplet size distribution during the
onset of the collision-coalescence process. Figure adapted from Berry & Reinhardt
(1974) and Lamb (2001), courtesy of D. Lamb, Penn State University.

collision-coalescence growth process (e.g., Rogers & Yau 1989), again accen-
tuating the importance of understanding the details of processes that influence the
droplet size distribution.

The problem of large-drop production to initiate the formation of rain has been
a focal point of cloud physics research for several decades (see texts by Cotton
& Anthes 1989, Pruppacher & Klett 1997, and Rogers & Yau 1989 for additional
discussion). Often the discussion has been focused on the width of the droplet size
distribution, with broad distributions tending to increase the gravitationally induced
collision rate. This, of course, goes against the tendency of condensation growth
to cause a size distribution to become narrower with time. Hence, these related
concepts have driven longstanding efforts to compare calculated and measured
droplet size distributions in convective clouds (e.g., see Cotton & Anthes 1989).
In general, observed size distributions are significantly broader than calculated
(e.g., Austin et al. 1985, Brenguier 1990, Hill & Choularton 1985). Some of the
“broadening” is due to instrumental artifacts, but recent measurements suggest that
there still is a discrepancy even when instrumental effects are accounted for and
measurements are confined to thermodynamically isolated regions of cloud where
mixing and dilution has not altered the size distribution (Brenguier & Chaumat
2001, Lasher-Trapp & Cooper 2000). Particularly interesting are the observations
of “super-adiabatic” droplets, which are larger than the maximum size predicted
by models of condensation growth in an isolated rising volume of cloud (e.g., Hill
& Choularton 1985, Brenguier & Chaumat 2001).
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3. THE NATURE OF TURBULENCE IN CLOUDS

Turbulent atmospheric flows, including convective clouds, are characterized by
enormous Reynolds numbers. For example, the inertial subrange in the atmo-
spheric boundary layer can extend from hundreds of meters to millimeters, result-
ing in turbulence (large-eddy) Reynolds numbers on the order of Rt ∼ 107. An
additional characteristic of atmospheric turbulence is the strong intermittency of
certain quantities, such as energy dissipation and scalar variance, on small spatial
scales (e.g., Sreenivasan & Antonia 1997, Warhaft 2000, Wyngaard 1992). The
nature of atmospheric turbulence at fine scales and its interactions with other pro-
cesses, such as cloud development, are areas of active research (Muschinski &
Lenschow 2001). While recognizing that other mechanisms likely contribute to
this broadening (e.g., Feingold & Chuang 2002), here we focus on the possible
roles of fine-scale turbulence.

The main sources of turbulent kinetic energy in clouds are shear evaporative
cooling due to entrainment of dry air (mostly at cloud top) and heating due to
condensation growth (mostly at cloud base) (Cotton & Anthes 1989, Pruppacher
& Klett 1997, Smith & Jonas 1995). The kinetic-energy dissipation rateε varies by
several orders of magnitude in turbulent clouds;ε ∼ 10−2 m2 s−3 is a typical value
for moderate cumulus convection (e.g., Pruppacher & Klett 1997, Weil et al. 1993).
The rms velocity also varies over at least two orders of magnitude, and for moderate
cumulus convectionurms ∼ 1 m s−1 is typical (e.g., see Figure 2). Given a typical
large-eddy scalel ∼ 102 m, the large-eddy Reynolds number Rt ∼ lurms/ν ∼ 107.
The Kolmogorov scale is on the order ofλk = (ν3/ε)1/4 ∼ 10−3 m, where the
kinematic viscosity of air is on the order ofν ∼ 10−5 m2 s−1. Thus, turbulence
in clouds is characterized by very large Reynolds numbers, relatively small en-
ergy dissipation rates (as compared with many engineering flows), moderate rms
velocities, and a large inertial subrange spanning several orders of magnitude.

3.1. Fine-Scale Intermittency

Energy dissipation in the smallest scales of turbulence is unevenly distributed in
space, or intermittent, and this intermittency steadily increases with Reynolds num-
ber (Wyngaard 1992, Sreenivasan & Antonia 1997). Similar fine-scale intermit-
tency is observed in scalar gradients (Warhaft 2000) and Lagrangian accelerations
(Hill 2002, Voth et al. 1998). By intermittency, it is meant that the probability of
large-amplitude fluctuations is greatly increased relative to what might be expected
for a normally distributed random variable. A pdf of velocity gradients, therefore,
has long, nearly exponential tails, which grow flatter with increasing Reynolds
number (e.g., see Figure 1 in Wyngaard 1992). For example, the velocity gradi-
ent probability density functions of typical numerical studies of turbulence (direct
numerical simulations) have a kurtosis of order 1, whereas values on the order of
10 are found in the turbulent atmosphere (e.g., Figure 6 in Sreenivasan & Antonia
1997). The strong dissipation-rate intermittency present in a turbulent flow in
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Figure 4 Cumulative probability distribution of the kinetic energy dissipation rate for
a selection of velocity data obtained in a high-Reynolds-number atmospheric flow. The
ordinate isP(log(ε/ε̄) < x), stretched so that a normal distribution will lie on a straight
line. Over nearly two decades around the mean, therefore, the probability distribution
of ε/ε̄ is approximately lognormal. This implies, for example, that dissipation rates
greater than 10 times the mean occupy approximately 1% of the fluid volume. As
discussed in the text, the acceleration scale corresponding to 10¯ε is roughly 2 to
40 m s−2 for realistic values of ¯ε. Data from the FLAT90 field experiment, courtesy of
S.P. Oncley, NCAR. Figure adapted from Shaw & Oncley (2001).

the atmospheric boundary layer (not in the presence of clouds) is illustrated in
Figure 4. Noting that the ordinate is stretched so that a lognormal function will
lie on a straight line, it becomes clear why one of the earliest descriptions of
a spatially varyingε was the lognormal model. In essence, the “landscape” of
small-scale turbulence looks drastically different at high Reynolds numbers from
its low-Reynolds-number counterpart.

An immediate question arises as to the relevance of intermittency to cloud
processes occurring on small scales. One of the earliest considerations of this was
by Tennekes & Woods (1973), who assumed that some cloud processes likely
are sensitive to the rare but intense dissipation events commonly observed in
atmospheric turbulence. For example, motion of cloud droplets relative to the
surrounding air is caused by gravitational and Lagrangian fluid accelerations (see
Section 4). The fluid-induced acceleration of cloud droplets is dominated by the
smallest scales in a turbulent cloud, and the mean-square Lagrangian acceleration
is a function of the average energy dissipation rate,〈a2

L〉 = aoε̄
3/2ν−1/2 (Monin &
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Yaglom 1975, Section 21.5). Forao ≈ 10, as estimated by Voth et al. (1998) in
recent laboratory studies at high Reynolds numbers, and ¯ε ∼ 10−2 m2 s−3, the
rms Lagrangian acceleration isaL ,rms ∼ 2 m s−2. The mean fluid acceleration,
therefore, might be considered negligible when compared with the gravitational
accelerationg. In atmospheric turbulence, however, where 1% of the fluid volume
may correspond to dissipation rates greater than 10¯ε (see Figure 4), we would
expect local Lagrangian accelerations to be of the same order as or greater than
the gravitational acceleration.

Modifications to account for intermittency must be made when using relation-
ships based on Kolmogorov scaling. For example, Hill & Wilczak (1995) and Hill
(2002) point out that the scaling law〈a2

L〉 = aoε̄
3/2ν−1/2 must be modified at large

Reynolds numbers to account for increasing intermittency. In essence, the rela-
tionship〈a2

L〉 = aoε̄
3/2ν−1/2 is based on the assumption of Gaussian-distributed

velocity gradients, which implies that the rms acceleration is underestimated at
large Reynolds numbers. Hill & Wilczak (1995) provide a means for estimating
the mean-square Lagrangian acceleration from single-component measurements
of velocity, such as hot-wire data from the atmospheric boundary layer:〈

a2
L

〉 = 4Hχ

∫ ∞

0
〈(u − u′)4〉r−3 dr, (6)

where〈(u − u′)4〉 is a fourth-order velocity structure function,r is the lag between
primed and unprimed velocities (Hill & Wilczak 1995, Equation 48), andHχ is a
constant that has been evaluated in numerical simulations. Shaw & Oncley (2001)
calculated the fourth-order velocity structure function from the data used to gen-
erate Figure 4 and used Equation 6 to calculate an rms Lagrangian acceleration
of 19 m s−2. They found that this result was consistent with the scaling recently
proposed by Hill (2002) that〈a2

L〉 ∝ ε̄3/2ν−1/2R1/4
λ . Hill’s theory and these calcu-

lations suggest that rms Lagrangian accelerations can be several times larger than
the gravitational acceleration for realistic atmospheric Reynolds numbers. Indeed,
recent laboratory studies have revealed intense Lagrangian accelerations in turbu-
lent flows (Hill & Thoroddsen 1997, La Porta et al. 2001, Voth et al. 1998), and
other evidence exists for their presence in the atmosphere as well (Shaw & Oncley
2001).

Another aspect of fine-scale intermittency that may prove useful to understand-
ing the nature of fluid-particle interactions is the possible link to long-lived vortex
structures. For example, in their pioneering study, Tennekes & Woods (1973)
concluded that further progress in understanding cloud particle–turbulence in-
teractions would depend on finding a “definition of dissipative filaments in the
microstructure of turbulence.” At that time there was speculation that vortex tubes
might be related to fine-scale intermittency. More recently, improvements in com-
putational and laboratory capabilities have allowed for the detailed study of small-
scale turbulence and vortex tubes over a broad range of Reynolds numbers, from
Rt ∼ 103–106 (e.g., Belin et al. 1997, Cadot et al. 1995, Dernoncourt et al. 1998,
Jiménez et al. 1993, Schwartz 1990, She et al. 1990). Many of these studies have
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concentrated on the three-dimensional properties of vortex tubes by visualization
of numerically produced vorticity fields or by laboratory techniques such as bubble
migration and ultrasound. The largest Reynolds numbers in which vortex tubes
have been studied have approached values typically encountered in the atmosphere
(Rt ∼ 106 to 108). These studies provide a picture of small-scale turbulence con-
sisting of intense regions of vorticity organized in cylindrical structures referred
to as tubes, worms, or filaments. Their lifetime and intensity appear to be directly
tied to the largest scales in the turbulence, whereas their diameters are between
the Kolmogorov and Taylor microscales. The size, volume fraction, lifetime, and
intensity of these vortex tubes all depend on the turbulence Reynolds number.

A final aspect of cloud turbulence that is crucial to understanding precipitation
development and cloud evolution is the entrainment and mixing of dry air from the
surrounding environment into a cloud. The broad topic of entrainment has been
reviewed by Blyth (1993). Qualitatively, much can be learned about the entrain-
ment process by considering a horizontal traverse through a cloud, such as that
shown in Figure 2. One of the striking features that is confirmed by our own day-to-
day observations of clouds is the sharpness of cloud boundaries. The nongradient
mixing model by Broadwell & Breidenthal (1982), which provides a physically
based mechanism for the formation of extremely sharp boundaries in scalar con-
centration, is considered to be representative of the mixing process in clouds (e.g.,
Baker et al. 1984, Gerber 1991). Of course, cloud droplets are not just passive
tracers; they are finite-sized particles with inertia, and they interact thermodynam-
ically with their environment, leading to processes such as buoyancy reversal that
tend to enhance fine-scale intermittency (e.g., Grabowski 1993). As cloud droplets
are successively exposed to regions of enhanced and depleted water vapor con-
centration because of mixing, and as other complex interactions between mixing,
sedimentation, and vertical velocities occur, droplet size distributions may become
broader than otherwise predicted (e.g., Cooper 1989, Jensen & Baker 1989). This
is of great relevance to the formation of precipitation, as discussed in Section 5.

3.2. Randomness and the Pair Correlation Function

The study of turbulent flows is based on the notion that quantities such as velocity
or temperature can be considered random variables. This leads to utilization of the
tools of statistical physics, including correlation functions, power spectra, etc. To
study the nature of turbulent clouds, similar tools are used (e.g., Davis et al. 1999,
Gerber et al. 2001). When processes occurring at centimeter scales and below are
considered, however, the discreteness of cloud droplets must be noted (e.g., Baker
1992, Chaumat & Brenguier 2001, Kostinski & Shaw 2001). Here we provide a
brief overview of several concepts that allow the discrete, but still random, nature
of the spatial distribution of cloud droplets to be quantified using the language of
counting processes.

Most processes occurring in clouds, such as condensation growth (e.g.,
Srivastava 1989, Vaillancourt et al. 2002), collision-coalescence (e.g., Pinsky &
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Figure 5 Two examples of 1000 particles with spatial positions in two dimensions
chosen randomly.Left panel: Statistically homogeneous Poisson process. Particle posi-
tions are uniformly and independently distributed random variables. This is the perfect
randomness standard for dilute systems of particles.Right panel: Statistically homo-
geneous but spatially correlated (not Poisson) random process. Particle positions are
uniformly distributed but not independent random variables.

Khain 1997a), and the propagation of electromagnetic radiation (e.g., Kostinski
2001, Marshak et al. 1998), are linked to the spatial and temporal distribution
of cloud droplets. Of course, this requires that we account for the apparent ran-
domness of the small-scale features of clouds. For example, the number of cloud
droplets in a volume can be considered a random but countable variable. Figure 5
is a cartoon illustrating this notion of randomness, both with and without spa-
tial correlations. The left panel represents perfect randomness for a collection of
droplets. It is referred to as perfect because particle positions are uniformly dis-
tributed and statistically independent (uncorrelated), and the process is statistically
homogeneous (e.g., Shaw et al. 2002b). These conditions define a Poisson pro-
cess, characterized by the Poisson distribution on any scale, so that the number of
particlesN(V) in a test volumeV is distributed according to

p(N) = N̄N exp (−N̄)

N!
, (7)

whereN̄ is the mean number of particles inV. It is important to note that the validity
of the Poisson distribution on some spatial scaleV does not imply the Poisson
process. For example, positive and negative deviations from the Poisson process
on smaller spatial scales can cancel each other and result in Poisson statistics on
longer scales (as was shown by Kostinski & Shaw 2001). The Poisson process, or
perfect randomness, implies the absence of correlations on all scales.

A statistically homogeneous but spatially correlated random process is illus-
trated in the right panel of Figure 5. This is not a Poisson random process because
particle positions are no longer statistically independent owing to the presence of
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clusters and voids. The clustering is quantified by the pair correlation functionη,
specifically defined as a deviation from perfect randomness (see Equation 8). It
should be noted that the statistically homogeneous random process illustrated in
the right panel of Figure 5 is fundamentally different from a statistically inhomo-
geneous Poisson process, where the mean particle density is spatially dependent
and deterministic [e.g., an ideal gas of molecules in a gravitational field, wheren̄,
is a deterministic function of height (Shaw et al. 2002b)]. However, at sufficiently
small scales (e.g., sub-grid scales in a large-eddy simulation of a cloud) the lo-
cal number density of cloud particles is not a predictable function. Although the
assumption often is implicit, typically the homogeneous uncorrelated approach
(Poisson process) is used at these scales, as, for example, in the theory of colli-
sion and coalescence of cloud droplets [e.g., Pruppacher & Klett (1997); also see
Section 2]. However, in the presence of turbulent mixing, or when droplet iner-
tia is accounted for, correlations will exist, so we must use the homogeneous but
correlated random process approach. This serves as motivation for quantifying cor-
relations in droplet positions as a function of spatial scale. Which scales are relevant
to a particular problem will depend on the physical process under consideration.

Positive spatial correlations, such as in the right panel of Figure 5, result in
clustering at some range of spatial scales. In contrast, when negatively correlated
(e.g., particle repulsion), the resulting particle distribution is more uniform than
perfect randomness at that length scale. To quantify this picture, we consider a
volume elementdV sufficiently small so that it can contain only one droplet, and
so that the probability of finding a droplet in that volume isn̄dV, wheren̄ is the
mean droplet number density. If droplet positions are uncorrelated, then we would
expect that the conditional probability of finding a droplet in volume elementdV
separated by distancer from a reference drop isP1,2(r) = n̄dV (noting that the
symbolr implies isotropy). If, however, the positions are correlated we define the
pair correlation functionη(r) as

P1,2(r) = n̄dV[1 + η(r)] (8)

(Landau & Lifshitz 1980). The pair correlation function is zero for perfect ran-
domness and has a lower limit of−1, e.g., for scales less than the diameter of
impenetrable particles. If the pair correlation function is greater than zero, it im-
plies that when a droplet is encountered at a given position in a cloud, there is an
enhanced probability of finding another droplet distancer away. It should also be
mentioned that in the fluid mechanics literature the pair correlation function often
is referred to as the radial distribution functiong(r) = η(r) + 1 (e.g., Reade &
Collins 2000, Sundaram & Collins 1997, Wang et al. 2000).

It follows from Equation 8 thatη(r) can be written in the form (Kostinski &
Jameson 2000, Shaw et al. 2002b)

η(r) = N(ro)N(ro + r)

N̄2
− 1, (9)

which we may take as an operational definition. This is a powerful result because it
provides a direct, albeit subtle, link to the traditional autocorrelation functionρ(r)
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defined for continuous random variables. Neglectingr = 0, the two are related via

η(r) = ρ(r)
n′2

n̄2
, (10)

wheren′ ≡ n − n̄ is the fluctuating component (Shaw et al. 2002b). As withρ(r),
η(r) → 0 asr → ∞, but asr → 0, the pair correlation function is not confined
to approach unity. This will be of some consequence when the pair correlation
function is introduced to the theory of collision and coalescence where correlations
on the scale of a droplet radius are considered.

4. DROPLET MOTION IN TURBULENCE

Fundamental to understanding the influence of turbulence on cloud processes is the
motion of an individual cloud droplet. In many basic treatments of cloud processes,
droplets are assumed to move with a steady-state fall velocityvT, but this neglects
the contribution of fluid accelerations, which under some flow conditions are of the
same order or larger than the gravitational accelerationg. For small cloud droplets,
the Reynolds number typically is sufficiently small so that the Stokes drag force is
a reasonable approximation. In this limit, Newton’s second law for a sphere with
velocityv in a viscous fluid with uniform (but time varying) velocityu is

ρdVd
dv
dt

= 6πµr (u − v) + 1

2
ρ f Vd (u̇ − v̇) + 6r 2√πρ f µ

∫ t

0

u̇(t ′) − v̇(t ′)√
t − t ′ dt′

+ ρdVdg + ρ f Vd (u̇ − g) . (11)

Here,µ andρ f are the dynamic viscosity and density of the surrounding fluid
(air), ρd is the density of the droplet (water), andVd = 4/3πr 3 is the droplet
volume. The terms on the right of Equation 11 are, in order, the Stokes drag force,
the “added mass” force due to acceleration of the surrounding fluid, the Basset
“history” force due to diffusion of vorticity from an accelerating particle, the grav-
itational force, and finally, two terms resulting from the stress field of the fluid
flow acting on the particle (including a shear stress term and a pressure gradient or
buoyancy term). More thorough discussions of the equation of motion for a sphere
are available in the literature (e.g., Corrsin & Lumley 1956, Manton 1977, Maxey
& Riley 1983). For the sake of brevity, we mention only that Equation 11 is based
on several limiting assumptions that typically are valid for cloud droplets, includ-
ing the neglect of flow curvature, slip corrections, and interaction with boundaries
or other particles. Obviously, the latter restriction must be relaxed if details of the
collision-coalescence are to be considered, but in clouds the volume fractionφ of
droplets is sufficiently small, typically on the order ofφ = nVd ∼ 10−6, so that
droplet-droplet interactions typically can be ignored for the majority of a droplet
trajectory.



1 Nov 2002 18:41 AR AR159-FM35-10.tex AR159-FM35-10.sgm LaTeX2e(2002/01/18)P1: GJB

TURBULENCE AND CLOUD PHYSICS 199

4.1. Relative Velocity and Dimensionless Scales

To understand the origin of particle clustering in turbulent flows we are especially
interested in terms that decouple the particles from the incompressible fluid, for
example, any term containing a relative particle-fluid velocity. In an approximate
sense, these terms allow us to consider the droplet phase as a compressible fluid,
thereby making its dynamics even richer than for typical scalar quantities. Defining
w ≡ v − u and dividing by droplet mass, we obtain from Equation 11

dw
dt

= − w
τd

− ρ f

ρd

ẇ
2

−
(

9

2πτd

ρ f

ρd

)1/2 ∫ t

0

ẇ(t ′)√
t − t ′ dt′

+
(

1 − ρ f

ρd

)
g −

(
1 − ρ f

ρd

)
u̇. (12)

The last term on the right side represents the effect of Lagrangian fluid accelera-
tions in generating relative droplet-fluid accelerations. Mathematically, the last two
terms on the right are the only nonhomogeneous terms in the differential equation
and therefore can be considered to be the external drivers of droplet motion. To
estimate the magnitudes of the various terms in Equation 12, it is necessary to in-
troduce characteristic scalesτ f anduo for the fluid andwo for the relative velocity.
For example, relative droplet acceleration scales asẇ = (wo/τ f )ẇ∗, and fluid ac-
celeration scales aṡu = (uo/τ f )u̇∗, where all starred variables are dimensionless.
Finally, the gravitational acceleration is written asg = |g|g∗. In this form, three
natural dimensionless parameters arise from the equation of motion: density ratio
α = ρ f /ρd, droplet Stokes number Sd = τd/τ f , and acceleration ratio (Froude
number) Ff = gτ f /uo. Using these definitions, and neglecting terms of order
α ∼ 10−3 and smaller, Equation 12 becomes

w∗ + Sdẇ∗ +
(

9

2π
αSd

)1/2 ∫ t∗

0

ẇ∗
√

t∗ − t∗′ dt∗′ = −Sd
uo

wo

(
u̇∗ − F f g∗) (13)

(e.g., Manton 1977). Usually it is assumed that the acceleration ratio Ff À 1 so
thatwo = τdg and Equation 13 reduces tow∗ + Sdẇ∗ = g∗. In dimensional form,
this has the solutionw = τdg(1− exp(−t/τd)) and represents a simple relaxation
of relative velocity to the terminal fall speed. It has been pointed out, however, that
even in moderately turbulent clouds the Lagrangian fluid accelerationu̇ can be of
the same order of magnitude asg and that in localized regions within a turbulent
flow it is possible to havėu À g (La Porta et al. 2001, Shaw & Oncley 2001). As
a result, the full equation (Equation 12 or Equation 13) must be used. The nature
of fluid accelerations in turbulence is discussed at greater length in Section 3.

Clearly, much of the physics of droplet motion in a turbulent cloud is contained
in the Stokes number Sd and the acceleration ratio Ff, leaving the task of estimating
these parameters for realistic cloud conditions. Here we are interested especially
in the nature of droplet motion during early stages of cloud formation and the
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onset of the collision and coalescence process. Therefore, we taker ∼ 10µm as a
droplet radius scale. To obtain appropriate fluid time and velocity scales, we must
consider the spatial scale in the fluid turbulence at which Lagrangian accelerations
are dominant. Based on the traditional picture of the turbulent cascade, scaling
arguments suggest that Lagrangian accelerations scale asal ∼ ε2/3l−1/3, where
l is the eddy length scale andε is the kinetic energy dissipation rate per unit
mass (Monin & Yaglom 1975, Section 21.5). Thus, Lagrangian accelerations are
dominant at the smallest spatial scales of the flow, corresponding to the dissipation
or Kolmogorov scaleλk. Because it is assumed that properties of the dissipation-
scale eddies depend only onν and ε, it follows that these eddies will have a
timescaleτk = (ν/ε)1/2. Therefore the Stokes number for droplets in a turbulent
flow is

Sd = τd

τk
= 2ρdε

1/2r 2

9ρ f ν3/2
. (14)

For typical cloud conditions (ε ∼ 10−2 m2 s−3, ν ∼ 10−5 m2 s−1) andr ∼ 10−5 m,
the Stokes number is close to the orderSd∼ 10−1. An example of the distribution of
particles resulting from a direct numerical simulation of homogeneous, isotropic
turbulence containing cloud droplets (with realistic Stokes number and energy
dissipation rate; see Vaillancourt et al. 2002) is shown in Figure 6, to be discussed
in greater detail in Section 5. For now, we note the tendency for cloud droplets to

Figure 6 A slice through the computational domain of a direct numerical simulation
of homogeneous, isotropic turbulence containing particles. The gravitational accelera-
tion, particle Stokes number, kinetic energy dissipation rate, and Kolmogorov scales are
matched to those typically encountered in an atmospheric cloud. Given these scales,
the slice is 0.1 m on a side. Theleft panelshows vorticity contours, and theright
panelshows droplet positions, illustrating the tendency of droplets to form clusters in
regions of low vorticity. Figure adapted from Vaillancourt et al. (2002), courtesy of
P. Vaillancourt, Meteorological Service of Canada.
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form clusters in regions of low vorticity owing to their finite inertia. The equation
of motion for the droplets includes Stokes drag and gravitational acceleration, but
does not include the history term (Vaillancourt et al. 2001). Of course, this type of
numerical simulation is unable to approach the large turbulence Reynolds numbers
that exist in the atmosphere and, as a result, the local variation in the acceleration
ratio is expected to be much smaller than in the atmosphere.

The history term is difficult to compare with other terms because the integral
depends on the specific flow and droplet path under consideration. However, it is
retained in Equation 13 because it scales asα1/2 and S1/2

d and therefore, for flows
with large fluid accelerations, the history term can be important (e.g., Corrsin &
Lumley 1956, Manton 1974; R.J. Hill, personal communication). As Fuchs (1989)
aptly puts it, the history term is “neglected in most published work on aerosols,
no arguments to justify the simplification having been put forward.” The presence
of strong acceleration intermittency in atmospheric turbulence (e.g., Hill 2002,
La Porta et al. 2001, Shaw & Oncley 2001, Voth et al. 1998) suggests that, in
addition to the other terms, it will likely be necessary to consider the role of the
history term in cloud-droplet motion more carefully in future research.

4.2. Droplet Inertia and Number Density Fluctuations

Droplet growth both by condensation and by collision-coalescence is influenced
directly by the local number densityn of cloud droplets. It is of interest, therefore,
to consider fluctuations inn, including possible temporal and spatial correlations.
For the sake of transparency, we use the simplified droplet equation of motion

dv
dt

= 1

τd
(u − v) + g. (15)

In the limit of smallτ (small particle inertia), which is satisfied during the early
stages of cloud development, Equation 15 has the approximate solution

v = u + τdg − τdu̇ +O (
τ 2

d

)
, (16)

which has the reasonable physical interpretation that, for example, droplets will
lag the fluid when the fluid experiences a positive local acceleration. It is crucial
to make special note here thatu̇ is the total acceleration,̇u = ∂u/∂t + u · ∇u.
Number density fluctuations are a manifestation of compressibility of the particle
phase, as can be seen from the conservation equation for droplet number density,

dn

dt
= ∂n

∂t
+ v · ∇n = −n∇ · v. (17)

We proceed, therefore, by calculating the divergence of the droplet velocity
from Equation 16:

∇ · v = −τd∇ · (u · ∇u) = −τd

(
∂ui

∂xj

)(
∂u j

∂xi

)
, (18)
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where standard index notation is used in the last expression. In obtaining Equa-
tion 18, we have assumed that the surrounding fluid is incompressible so that
∇ · u = 0, and we also note that the gravitational acceleration does not contribute
to the compressibility of the droplet phase. Equation 18 is Equation 5.10 of Maxey
(1987), a remarkable result that has served as the basis for important subsequent
work applied to cloud physics (e.g. Balkovsky et al. 2001, Elperin et al. 1996,
Pinsky & Khain 1997a). Using the definitions of the strain rate tensorei j and the
rotation tensorri j , one physical interpretation of Equation 18 can be made clearer
by writing it in the form∇ · v = −(τd/4)(4ei j ei j − ri j r i j ). The droplet velocity
field is divergent for large vorticity and is convergent for large strain rate. Maxey’s
conclusion that “particles will tend to accumulate in regions of high strain rate or
low vorticity” follows directly.

Once it is accepted that particles/droplets can be considered from the viewpoint
of a continuous, compressible scalar constituent (i.e., Equation 17), it follows that
the scalar statistics will be of interest. To this end, Elperin et al. (1996, 1998, 2000)
used a path integral approach to obtain an equation for the high-order correlation
function. They conclude that the particle spatial distribution is strongly intermittent
when particle inertia is sufficiently large so that∇ · v 6= 0, and also that, for cloud
particles and typical turbulence scales in the atmosphere, the strongest fluctuations
will occur on millimeter scales. Jeffery (2000, 2001b) has extended the correlation
function for the viscous-convective subrange to obtain the spectral density of
inertial particles, thereby allowing the scale dependence of density fluctuations
to be investigated directly (discussed at greater length in Section 7.2). Jeffery
(2000) concluded that particle inertia results in enhanced variance of the scalar
dissipation rate in the viscous-convective subrange for droplet Stokes numbers
larger than Sd ≈ 0.2. This conclusion is based on the Gaussian hypothesis used by
Pinsky et al. (1999a) to obtain an expression for〈(∇ · v)2〉 that effectively relates
it to the droplet Stokes number (Jeffery 2000). As pointed out by Jeffery (2001b),
the Gaussian hypothesis fails to account for velocity gradient intermittency that
exists at large Reynolds numbers. To account for these effects, Jeffery (2001b)
shows that〈(∇ · v)2〉 can be related to three scalar invariants that are functions
of kinetic energy dissipation rate and enstrophy. Assuming that the dissipation
rate term is dominant, he incorporates the Reynolds number dependence into an
effective Stokes number proportional to the square root of the longitudinal velocity
gradient flatness factor. Jeffery estimates that in the atmospheric boundary layer
the effective Stokes number is approximately 2.7Sd.

Finally, we note that direct numerical simulations of isotropic turbulence con-
taining particles also have shown that significant number density fluctuations arise
for particles for a range of particle Stokes numbers (e.g., Eaton & Fessler 1994,
Hogan et al. 1999, Reade & Collins 2000, Sundaram & Collins 1997, Wang et al.
2000). In many of these studies the phenomenon has been referred to as “pref-
erential concentration,” descriptive of the remarkable “unmixing” of particles in
turbulence due to their finite inertia. A full review of this work is not possible here,
but briefly, the results generally confirm that particles with Stokes numbers on
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the order of 1 tend to drift to regions of low vorticity. Qualitatively, particles with
very small Stokes numbers tend to follow fluid streamlines, and particles with very
large Stokes numbers do not respond to the fluid significantly during the lifetime of
an eddy. Therefore, particles with Stokes numbers near 1 are effectively resonant
with dissipation-scale eddies in turbulent flow.

5. DROPLET GROWTH BY CONDENSATION

As discussed in Section 2, the standard theory of droplet growth by condensation
in a closed parcel results in narrow droplet size distributions. This is in contrast to
many observations of droplet distributions in clouds, even in core regions where
entrainment of dry air is nonexistent or weak. Especially compelling is the possible
presence of super-adiabatic drops that are larger than can be explained even for a
completely undiluted cloud (e.g., Brenguier & Chaumat 2001, Hill & Choularton
1985) because they may serve to initiate the collision-coalescence process.

5.1. Stochastic Condensation

One approach for including condensation in a turbulent flow is to perform Reynolds
averaging on the equation for condensation growth, resulting in covariances that
can be thought of as “Reynolds stresses.” We cover this approach in detail be-
cause it provides a direct link to standard turbulence techniques and it reveals
some of the underlying difficulties in describing condensation growth in a tur-
bulent flow. To begin, we consider just the condensation portion of Equation 1,
∂ f (r )/∂t = ∂[ṙ f (r )]/∂r . Following the standard approach for Reynolds averag-
ing, with variables consisting of mean and fluctuating componentsf = f̄ + f ′

andṙ = ¯̇r + ṙ ′, we have

df̄

dt
= −∂(¯̇r f̄ )

∂r
− ∂(ṙ ′ f ′)

∂r
. (19)

This is known as the stochastic condensation equation, and there is a large amount
of literature devoted to its formulation, and to obtaining solutions for various lim-
its (e.g., Stepanov 1975; Pruppacher & Klett 1997, Chapter 13). In most cases,
Equation 19 is solved under the assumption that turbulent fluctuations in the super-
saturation field are much slower than the phase relaxation timeτ s (see Equation 3).
In fact, we may borrow terminology from the field of reactive flows (e.g., Libby
& Williams 1980) and define a supersaturation Damk¨ohler number, Ds = τ f /τs,
whereτ f is a fluid timescale. In what has been called the low frequency limit,
we have Ds À 1 and may expect strong interactions between turbulence and the
reactive species, in this case water vapor supersaturation.

In the covariance terms in Equation 19,f ′ often is obtained using simple Prandtl
mixing length arguments. Fluctuations inṙ are often obtained by assuming that
turbulent fluctuations are slow compared to the phase relaxation timeτ s, so that the
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quasi-steady supersaturation can be used (see Section 2). Specifically, Equation 2
for the fluctuating component becomesṙ ′ = γ s′/r , with s′ = ϕu′

zτs. The key
point is that both mean and fluctuating supersaturations are tied to the vertical
velocity. It has been shown that this places a severe restriction on the degree to
which turbulent fluctuations can lead to broadening of the size distribution (e.g.,
Pruppacher & Klett 1997). By allowing for vertical velocity fluctuations at cloud
base and for entrainment of dry air, more recent stochastic-condensation models
are able to overcome these limitations (e.g., Cooper 1989) and lead to improved
agreement with observations (Politovich 1993).

It is important to consider when the low frequency limit (or large Damk¨ohler
number limit) ceases to be valid. We can estimate the spatial scale at which Ds∼ 1
by using Kolmogorov scaling, so that at any scaler the energy dissipation rate
may be written asε ∼ u3

r /r ∼ r2/τ 3
r . When Ds = 1, we haveτs = τr, where

the fluid timescaleτ f has been replaced by the scale-dependent fluid timescaleτ r.
Therefore, the scale at which Ds = 1 can be estimated asr∗ ∼ (ετ 3

s )1/2, which
for typical cloud conditions withτ s ∼ 10 s, is on the order of several meters.
We note that this spatial scale compares well to the observed onset of a regime of
enhanced variance in liquid water content variance in clouds (see Figure 7) (also see
Mazin 1999 for similar arguments). It is clear, therefore, that the low frequency
limit (or large Damköhler number limit) often is not satisfied in clouds, where
significant fluctuations in vertical velocity and droplet number density occur on
smaller spatial scales. A recent contribution by Khvorostyanov & Curry (1999a,b)
lays out a procedure for solving the stochastic collection equation for more realistic
conditions where turbulent fluctuations can be of the same order asτ s. Although
simplifying assumptions are made, they are able to obtain analytical solutions for
the droplet distributions in the form of gamma distributions. This is an attractive
result, as many observed cloud-droplet distributions can be fitted with gamma
distributions (e.g., Pruppacher & Klett 1997).

In a somewhat different approach, Kulmala et al. (1997) have developed an
approach to stochastic condensation by considering mean and fluctuating compo-
nents of water vapor pressurepv = pv + p′

v and temperatureT = T̄ + T ′ so that
s = (pv + p′

v)/(p∗
v (T̄ + T ′)). The latter expression is expanded to second order,

and the Clausius-Clapeyron equation is used to evaluate derivatives of the equilib-
rium vapor pressure with respect to temperature. Finally, approximate expressions
for the mean and variance of the saturation ratio are obtained, which then are used
in the framework of a condensation growth model. Two compelling results of this
model are the activation of cloud droplets even when the mean supersaturation is
negative, and the importance of supersaturation fluctuations in the overall droplet
growth rate.

5.2. Droplet Number Density Fluctuations

Fluctuations in droplet number density due to finite droplet inertia and their in-
fluence on the condensation growth process have been considered by Grabowski
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Figure 7 The one-dimensional scalar spectrum for liquid water content data obtained
during the SOCEX field experiment and first presented by Marshak et al. (1998), shown
asopen squares. The observed spectrum is an order of magnitude larger than the typical
inertial-convective and viscous-convective scaling, which is shown by thesolid line.
Note that the Kolmogorov length scale is on the order of 1 mm. Adapted from Jeffery
(2001b), courtesy of C. Jeffery, Los Alamos National Laboratory.

& Vaillancourt (1999), Jeffery (2001b), Pinsky & Khain (1997b), Pinsky et al.
(1999a), Shaw et al. (1998, 1999), Shaw (2000), Vaillancourt & Yau (2000), and
Vaillancourt et al. (2002). We begin a brief review of the general results by pointing
out the pioneering efforts by Srivastava (1989) toward understanding the role of
number density fluctuations, which exist even when no inertia is present, in the
condensation process. Srivastava considered the possible effect of local number
density fluctuations in a perfectly random arrangement of droplets (the number of
droplets in a given volume obeying the Poisson pdf). In essence, because the local
supersaturation is inversely proportional to the local number density of droplets
and because of thermodynamic interactions between closely spaced droplets, this
approach suggested that density fluctuations will lead to broadening of the size
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distribution. Vaillancourt et al. (2001) have performed careful simulations of the
condensation process for populations of droplets distributed in space with uniform
probability (perfectly random). They find that significant supersaturation fluctua-
tions are formed, but that the dispersion in droplet growth is greatly reduced when
droplet sedimentation is accounted for. They conclude that the broadening of the
size distribution is insufficient to match observations from unmixed cloud cores.

Vaillancourt et al. (2002) have performed the first direct numerical simulation
of a turbulent flow, coupled with the droplet-condensation growth process, for
parameters matched to those typically found in atmospheric clouds. A “snapshot”
of vorticity (left panel) and droplet location (right panel) from their simulations is
shown in Figure 6 and illustrates the tendency of droplets to cluster in regions of
low vorticity. Vaillancourt et al. (2002) found the condensation process in turbulent
clouds to be surprisingly complex, with droplet sedimentation, droplet inertia, and
fluid mixing all playing important roles. For example, under typical conditions
for a cumulus cloud there were significant number density fluctuations caused by
finite particle inertia, but at the same time gravitational sedimentation tended to
suppress these fluctuations. A major finding was that, although preferential con-
centration led to larger supersaturation fluctuations, droplet size distributions were
more narrow than without the turbulence. The narrowing occurs because droplet
growth rate is a function of the time integral of supersaturation and droplet inertia
results in a decreased decorrelation time between droplets and their thermody-
namic environment. This intriguing conclusion is in contrast to the majority of
previous studies in which turbulence has led to broader size distributions.

For example, using a model of droplet number density fluctuations in Batchelor
turbulence, Pinsky et al. (1999a) investigated the effects of droplet inertia on the
condensation growth process. They showed that the timescale for inertial mixing
of droplets between clusters at small scales is of the same order as the timescales
for molecular diffusion and droplet growth. This inertial mixing and subsequent
thermodynamic response led to slight broadening of the droplet size distribution.
As expected, the size distributions were found to be much broader when mixing
of dry air into the cloud was accounted for. In the latter case, the inertial mixing
tended to produce more spatially uniform size distributions than when droplet
inertia was not accounted for.

Shaw et al. (1998) investigated the Reynolds-number dependence and the effects
of intermittency on the condensation growth process by using a model of droplet
motion in intense, relatively long-lived vortex tubes (see Section 3). Because these
structures have diameters somewhere between the Kolmogorov and Taylor mi-
croscales and peak azimuthal velocities that scale with the large-eddy velocity
scale, droplets contained therein experience very large radial accelerations. This
leads to an exponentially decreasing number density of droplets within a vortex,
with a time constant proportional to (r 2ε)−1 (Shaw 2000). Because these intense
vortex tubes persist for times on the order of the large-eddy timescale, the density
fluctuations are sufficiently long lived so as to lead to large supersaturation fluctua-
tions: Accounting for molecular diffusion, Shaw (2000) found that supersaturations
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larger than 10% can be reached in vortex cores. Shaw et al. (1998) used their
model of droplet motion coupled with relevant thermodynamic fields and con-
densation growth, and concluded that significant broadening of the size distri-
bution would occur. In a comment on this work, Grabowski & Vaillancourt
(1999) argued that the presence of gravitational sedimentation will tend to re-
duce the effect and that the droplet Stokes numbers in clouds are too small to
yield significant number density fluctuations. Shaw et al. (1999) responded that
neglecting gravity is acceptable for droplet motion in a vortex because the fluid ac-
celeration is large relative to the gravitational acceleration. They also noted that the
Reynolds number dependence of fine-scale turbulence will lead to stronger den-
sity fluctuations and a broader range of Stokes numbers susceptible to preferential
concentration. As discussed in Section 4.2, Jeffery (2001b) has confirmed that at
very large Reynolds numbers an effective Stokes number should be used, which
leads to enhanced density fluctuations. However, Jeffery argues against the statisti-
cal significance of vortex tubes in generating density fluctuations. Clearly, further
work is required to clarify the role of coherent vortex structures in cloud processes.

5.3. Entrainment and Mixing

The role of entrainment and mixing in cloud-droplet growth has received attention
for many years and a complete treatment of the subject is beyond the scope of
this review. For example, the extensive discussions of homogeneous and inho-
mogeneous mixing and and their role in producing large drops and bimodal size
distributions, although of relevance, are not discussed here. We proceed by high-
lighting some recent results that are related directly to fine-scale turbulence, and
refer to the review by Blyth (1993) for further details.

An aspect of mixing that has been the subject of recent research is the formation
of supersaturation fluctuations by isobaric mixing (e.g., Gerber 1991, Korolev &
Isaac 2000). When two parcels with differentT andpv are thoroughly mixed, the
resulting temperature and vapor pressures are simple averages of the initialT and
pv weighted by volume fraction. However, the equilibrium vapor pressurep∗

v (T)
is a nonlinear function ofT, so it does not vary linearly with volume fraction. For
example, if two saturated parcels at different temperatures are mixed thoroughly,
the resulting mixture will be supersaturated. Gerber (1991) used this concept in the
context of nongradient mixing (Broadwell & Breidenthal 1982, Baker et al. 1984)
in fog and derived an expression similar to Equation 3 but with a different supersat-
uration source term. The source of supersaturation, instead of vertical motion, is re-
lated to the rate at which interface between the mixed volumes is created, being pro-
portional to (1− t/τl )−3/2, whereτl is the eddy turnover time for the largest scales
in the flow. Gerber’s modified supersaturation equation, coupled with a droplet
growth model, predicts sudden rises in supersaturation due to the rapid increase of
interfacial area during a mixing event, followed by a slow decay on the timescale
of droplet growth. Interestingly, such ramp-cliff structures are a common manifes-
tation of scalar intermittency in high-Reynolds-number flows (e.g., Warhaft 2000),
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although supersaturation is not a conserved variable, so the analogy may not be
accurate in the strictest sense. Finally, in Gerber’s model, the resulting supersatu-
ration fluctuations give rise to a significantly broader droplet size distribution and
improve the comparison with droplet size measurements made in radiation fog.

Korolev & Isaac (2000) consider the process of isobaric mixing in entrainment
zones in clouds, and show that for realistic gradients in temperature and vapor
pressure at the tops of stratocumulus clouds supersaturations at least an order
of magnitude higher than the typical (mean) supersaturations in clouds can be
produced in isolated zones. This results in rapid condensation growth and poten-
tially the formation of large droplets needed to initiate the collision-coalescence
process.

Krueger et al. (1997) have developed a new approach to capturing the details
of sub-grid scale mixing in cloud models by using Kerstein’s (1991) linear eddy
model, a one-dimensional representation of scalar fluctuations down to the dissi-
pation scale. Details of sub-grid scale modeling (e.g., Cotton & Anthes 1989) are
outside the scope of this review, but this particular model is mentioned because it
has been extended by Su et al. (1998) to account for the growth of individual cloud
droplets, so that droplet size distributions can be predicted. Essentially, the model
is used to describe fluctuations in scalar quantities such as temperature and vapor
density during a series of discrete entrainment events; then cloud-droplet growth
in the local environment can be calculated.

6. DROPLET GROWTH BY COLLISION
AND COALESCENCE

Rain formation by collision-coalescence is a classic example of an aggregation
process, but it also is notorious for the great uncertainty in the rate constants
governing the process (e.g., Zangwill 2001). Turbulence likely plays a fundamental
role in determining the rate constants (i.e., collision kernels) and perhaps even
compounds the difficulties already inherent in measuring or calculating them.
Here we discuss research suggesting that collision rates in clouds depend not only
on droplet size, but also on properties of the turbulent flow in which the droplets
reside.

6.1. Enhanced Droplet Settling and Relative Velocity

Dense particles in a turbulent flow can fall at speeds significantly different from the
settling velocity in a quiescent fluid (e.g., Manton 1974, Maxey & Corrsin 1986,
Maxey 1987, Wang & Maxey 1993). This has direct implications for the theory of
collision and coalescence, for example, as pointed out by Pinsky & Khain (1996).
In a recent study of particle motion near vortices, D´avila & Hunt (2001) have
related fundamental droplet-settling regimes with two dimensionless parameters,
a dimensionless terminal velocity VT, and a particle Froude number Fp. These
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parameters are related to the dimensionless numbers defined in Section 4.1 in the
form VT = Sd/F f and Fd = S3

d/F2
f . For cloud droplets in a convective cloud,

where the droplet terminal velocity (in still air) is less than the root mean-square
fluid velocity, the actual fall speed of particles with finite inertia will be increased
owing to interactions with the fluid turbulence (D´avila & Hunt 2001). Ghosh &
Jonas (2001) have applied these results to an approximate equation for the growth
of a large drop falling through a population of small cloud droplets, originally
developed by Baker (1993). In the original model, the radius of a large dropr
changes with time asr (t) = ro exp(t/τc), whereτ c is a time constant inversely
proportional to the liquid water content of the small droplets. When changes in
the sedimentation speed of the large drop due to fluid accelerations are accounted
for, a new time constantτ ∗

c < τc can be derived analytically, with the result that
the model is in greater agreement with observations of large drop concentrations
in stratocumulus clouds (Ghosh & Jonas 2001).

Khain & Pinsky (1995) considered the increase in volume swept out by a falling
drop due to shear-induced velocity relative to the fluid. They modified the collision
kernel with an rms relative velocity difference and showed that this could modify
the rate at which rain is formed in clouds. Moving from simple shear flows to a
full model of Batchelor turbulence, Pinsky & Khain (1997c) studied the relative
motion of droplets with respect to the fluid, accounting for finite droplet inertia. In
a companion paper, Khain & Pinsky (1997) studied the increase in swept volume
in the simulated turbulence, as well as the resulting increase in the collision kernel,
and its effects on the collision-coalescence process. The studies represent the first
application of these concepts to flows with ranges ofε and droplet radius relevant
to convective clouds. One potentially important limitation is the fact that the flow
fields considered were all two-dimensional, as well as the fact that the turbulence
model does not account for fine-scale intermittency.

With the aim of understanding the importance of acceleration intermittency
on the collision kernel, Shaw & Oncley (2001) analyzed hot-wire velocity data
from the atmospheric boundary layer as a surrogate for the high-Reynolds-number
turbulence typically found in clouds. As expected, the energy dissipationε was
found to be extremely intermittent, and this was used to show that Lagrangian fluid
accelerations in atmospheric turbulence can be up to 10g. Such accelerations are
expected to produce very large relative droplet velocities, with collision kernels
enhanced by an order of magnitude at least, although only in isolated regions of
the flow. Whether such intermittent spikes in the collision kernel will influence the
rain formation process remains an open question.

6.2. Enhanced Collision Rates Due to
Inertial Clustering of Droplets

Because the collision rateNc ∝ n2, it is a direct consequence of the density
fluctuations discussed in Section 4.2 thatNc will be a fluctuating quantity as well. In
essence, when droplet inertia is accounted for, the collision rate becomes a spatially
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dependent function, being enhanced in regions of high strain and low vorticity. This
is in addition to enhanced relative velocity and other turbulence effects described
in the previous section. Pinsky & Khain (1997a,b) first introduced this notion to the
cloud physics community and concluded that horizontal inhomogeneities would
be most prominent at centimeter scales. Because the collision rate is nonlinear, the
enhancement ofNc in regions of high droplet number density is greater than the
reduction ofNc in droplet-depleted volumes. They accounted for this mechanism
in the droplet-coagulation equation by adding a term proportional to the rms drop-
velocity flux divergence.

Another method for including effects of number density fluctuations in the
coagulation equation is given in the landmark paper by Sundaram & Collins (1997).
They used the pair correlation function, or radial distribution function, to quantify
the preferential concentration of monodisperse particles in isotropic turbulence.
Specifically, they showed that the Saffman-Turner collision kernel (Saffman &
Turner 1956) can be modified to account for spatial correlations by multiplying it
by the radial distribution function evaluated at the particle diameter. The reason for
this is approximately as follows. The number of collisions per unit time experienced
by a single droplet in a population of identical droplets spatially distributed with
perfect randomness is the product of the mean number density of droplets and the
collision kernel,̄nκ (see Section 2). Given that there aren̄ droplets per unit volume
the total collision rate isNc = 1

2n̄2κ. If, however, droplet positions are spatially
correlated, then we must consider the conditional probability that a droplet will be
found at a distance equal to the sum of the radii of the two droplets, the distance
at which a collision is said to occur. As discussed in Section 3.2, the conditional
probability of finding a droplet at a distancer from any given reference droplet
is P1,2(r) = n̄dV(1 + η(r)), whereη(r) is the pair correlation function. Using the
conditional probability per unit volume, the number of collisions per unit time
experienced by a single droplet in a spatially correlated population of droplets of
radiusr is n̄(1 + η(r + r ))κ. Therefore, we can write a modified collision rate
Ñc = 1

2n̄2(1 + η(2r ))κ. This result appears to be general for any statistically
homogeneous population of droplets and any collision kernel. The collision rate
between droplets of sizesr1 andr2 is Ñc = n̄1n̄2(1+ η1,2(r1 + r2))κ(r1, r2), where
η1,2(r) is the pair correlation between droplets of sizer1 andr2. The correct limit
Ñc = Nc = n̄1n̄2κ(r1, r2) is obtained for a completely uncorrelated droplet spatial
distribution whereη(r) = 0 at all scales.

Since the work by Sundaram & Collins (1997), there have been significant
efforts given to quantifying the degree of enhancement of droplet collision rates
when inertial effects are accounted for (e.g., Reade & Collins 2000, Wang et al.
2000). For the range of Stokes numbers considered in those studies, it was found
that at scales below the Kolmogorov scale the radial distribution function has a
power law form, increasing with decreasing scale until the finite size of the particle
is reached (as might be expected from a small-r expansion of the autocorrelation
function. Lending strength to this observation, the power law form of the pair cor-
relation function has been obtained theoretically by Balkovsky et al. (2001). Also,
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it has been pointed out that the range of Stokes numbers where significant inertial
clustering occurs tends to become larger as the turbulence Reynolds number is
increased over the modest ranges attainable in direct numerical simulations of tur-
bulence (Reade & Collins 2000, Shaw et al. 1999). Shaw et al. (1999) argued that
this may be a manifestation of the increasing intermittency at small scales, but ad-
ditional work is needed to confirm or reject this hypothesis. Finally, Vaillancourt &
Yau (2000) have pointed out that the majority of numerical and laboratory work
has been focused on a range of parameter space (e.g., Stokes number, gravitational
sedimentation) different from that occupied by atmospheric clouds. For example,
the majority of direct numerical simulation studies have not accounted for gravity
and have focused on Stokes numbers close to unity, where preferential concentra-
tion is observed to be most prominent (e.g., Hogan et al. 1999, Reade & Collins
2000, Sundaram & Collins 1997, Wang et al. 2000). Vaillancourt & Yau (2000)
point out that, whereas for many engineering flows these are reasonable regions of
parameter space to study, for the early processes in clouds the dissipation rates and
droplet sizes are such that Stokes numbers are on the order of 10−2 and gravitational
sedimentation is not negligible. The numerical simulation of droplet collision rates
in turbulent flows approximating atmospheric conditions (noting, of course, that
atmospheric Reynolds numbers will not be attainable) will be an important step in
future work.

Very few experimental studies of droplet growth in turbulence, in parameter
ranges of relevance to atmospheric clouds, have been reported in the literature;
the study by Woods et al. (1972) is a notable exception. Recently, however, Vohl
et al. (1999) have confirmed in a laboratory experiment that large drops suspended
in a wind tunnel containing small droplets experience faster growth when the
flow is turbulent than when it is laminar. They estimate that for drops starting
at a radius of roughly 70µm and growing to 180µm, the collision kernel was
increased by 10%–20% when turbulence was present, compared with the laminar,
differential sedimentation velocity scenario. Clearly, there is a great need for further
experimental studies of collision-coalescence in the presence of turbulence to
complement theoretical and computational progress.

6.3. A Model of Collision-Coalescence in Mixing Zones

Here we extend the collision formulation described in Section 6.2 to the problem
of entrainment and mixing in clouds. We consider a turbulent region of cloud
where a mean gradient inn exists (e.g., at cloud top) so that fluctuations inn
due to turbulent mixing lead to positive spatial correlations of droplet positions.
It is assumed that fluctuations due to turbulent mixing cease at scalesr < λk,
so that the autocorrelation function ofn is approximately 1 (its maximum value)
over the same range of scales. The autocorrelation function ofn can be predicted
using a mixing theory or obtained directly from measurements in clouds. Then it
is translated to the discrete language of the pair correlation function, withη(r1,2)
obtained via Equation 10 (note thatr1,2 is the scale at which two drops collide).
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Assuming thatr1,2 < λk, this results inη(r1,2) ≈ n′2/n̄2. We write the collision
rate asÑc = 1

2n̄2(1+ η(r1,2))κ to account for spatial correlations, in this case due
to turbulent mixing rather than inertial clustering of droplets. Therefore, for the
mixing zone,Ñc ≈ (n̄2 + n′2)κ = n2κ. Becausen2 ≥ n̄2, the actual collision
rate in the mixing zone always is greater than the collision rate corresponding to
perfect randomness, until complete mixing occurs so that no spatial correlations
exist. We note that, although obtained by different reasoning, then2 component
of Ñc is similar to the Reynolds stress terms in the collision equation consid-
ered by Stevens et al. (1998) in their critique of one- and two-dimensional cloud
models.

The arguments in the preceding paragraph are general, and now we proceed
to construct a conceptual model of collisions in the presence of nongradient mix-
ing (Broadwell & Briedenthal 1982). This model is consistent with the common
observation that the mixing process in clouds is characterized by sharp gradients
and sudden jumps between two extreme states (such as number density), rather
than smooth transitions (e.g., Baker et al. 1984, Brenguier 1993, Korolev & Mazin
1993, Malinowski et al. 1998, Paluch & Baumgardner 1989). We consider the
turbulent mixing of two volumes containing cloud droplets initially distributed
with perfect randomness, with number densitiesn1 andn2 and volume fractionsφ1

andφ2 (whereφ1 + φ2 = 1). Again, we assume that the minimum scale at which
fluctuations are expected to exist isλk. Before this scale is reached, however, we
make the assumption that the mixed region consists of “patches” ofn1 andn2,
with very sharp gradients separating them. These patches become finer and finer,
the interfacial area growing with time, until the entire mixed volume is occupied
by sharp gradients where molecular diffusion is efficient. In the theory of non-
gradient mixing, the surface area per unit volume grows as (1/ l )(1 − t/τl )−3/2,
which remains small until times close toτ l, when it grows explosively. If the in-
terfacial thickness where molecular diffusion is dominant is assumed to beδ, then
the volume fraction of uniformly mixed fluid grows as (δ/ l )(1 − t/τl )−3/2, which
for realistic cloud scales is negligibly small until reaching 1 att ≈ τl . Now, until
τ l is reached, to good approximation the relative volume fractionsφ1 andφ2 are
preserved (although they are divided with increasing fineness). This allows us to
write the collision rate asÑc ≈ n2κ = (φ1n2

1 + φ2n2
2)κ until τl is reached and

it relaxes toNc ≈ n̄2κ = (φ1n1 + φ2n2)2κ. Note that the first expression is the
volume-weighted average of the collision rate for the two original volumes, and
the second expression is the collision rate corresponding to the average number
density after the two volumes are mixed thoroughly.

For the simple case of entrainment of dry air (n2= 0) the ratio of collision rates
is Ñc/Nc = 1/φ1, illustrating that the difference can become large depending
on the volume fraction of entrained air. In a typical cloud model where mixing
is assumed to take place instantaneously on sub-grid scales it is clear that the
collision rate is consistently underpredicted and that improvements are needed if
small-scale variability is to be accounted for properly.
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6.4. Collision Efficiency

As pointed out in Section 2, the collision efficiency accounts for departures from the
behavior of a hard-sphere model, where interdroplet interactions are not present.
These departures are very significant for cloud droplets in air, with efficiencies
smaller than 0.01 being possible (e.g., Pruppacher & Klett 1997). Physically,
the combined effect of collision and coalescence efficiencies are due to the mi-
crohydrodynamics of interacting droplets, Van der Waals forces, etc., and the
details cannot be treated here because of space limitations. However, several re-
cent advances in accounting for effects of turbulence in the collision efficiency
are mentioned. Pinsky et al. (1999b, 2000) point out that, because the collision
efficiency is sensitive to droplet relative velocity, in a cloud the efficiency must
account not only for differential sedimentation, but also for relative velocities due
to flow accelerations. The model by Pinsky and coworkers of droplet motion in
turbulent flow results in inertia-induced relative velocities that can exceed the
gravitationally induced relative velocities for droplets with radii less than 30µm.
In this size range, they are able to use the Stokes-flow-superposition approach to
obtain collision efficiencies for various flow-induced configurations (droplet rel-
ative velocity and approach angle). As a result, they conclude that the collision
efficiency must be considered a random variable, and that its magnitude typically
is larger than the gravitational efficiency by several times for the droplet size range
considered. In a later study, Pinsky et al. (2001) extended this type of analysis to
higher droplet Reynolds numbers to obtain collision efficiencies for droplets with
radii up to 300µm. In addition, they demonstrated a significant pressure depen-
dence on the collision efficiency that is relevant to cloud processes because of the
large pressure changes that occur during cloud growth.

7. MEASUREMENTS IN TURBULENT CLOUDS

Measurements of cloud properties are challenging because clouds are transient
and usually must be studied remotely, often requiring complex data inversions,
or with airborne instrument platforms, which are expensive and come with severe
constraints on instrument size and data rate. (Obvious exceptions are low clouds
and fog, which can be studied in situ from towers or mountaintop observatories,
for example.) In spite of the inherent challenges, such measurements are of great
value in quantifying complex interactions over large ranges of spatial and temporal
scales characteristic of geophysical systems. And, of course, measurements from
real clouds are of crucial importance for guiding theoretical, computational, and
laboratory work.

In addition to physical challenges inherent in making measurements in clouds,
there are challenges associated with making measurements of a strongly fluctuat-
ing, random system. For example, how deterministic models of cloud processes
such as condensation growth should be compared with actual observations is an
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open question (e.g., Oreskes et al. 1994). In one approach, Liu et al. (1995) and Liu
& Hallett (1998) have argued via Shannon’s maximum entropy principle and en-
ergy considerations, that it is possible to derive most-probable and least-probable
functional forms for a droplet size distribution. Under the constraints of conserved
mass and number, the most probable size distribution is a Weibull function and the
least probable is a delta function. Any finite measurement, therefore, will result
in a distribution between the two limits, so it becomes necessary to consider the
probabilistic nature of the problem when comparing measurements and theory.
This must be coupled with the aforementioned caution that clouds and instrument
sampling volumes are finite, so the size distributionf (r) can only be estimated.
As with any random system, statistical measures such as means and variances
are meaningful only if the system is statistically homogeneous or stationary (e.g.,
Jameson & Kostinski 2000, 2001).

In this section, we highlight some of the most recent advances that are revealing,
for the first time, the fine-scale structure of turbulent clouds. We begin by discussing
measurements of continuous variables, such as velocity and temperature, and we
end with a review of recent efforts to quantify the spatial distribution of cloud
droplets in turbulent clouds.

7.1. Turbulence

Interactions between turbulence and cloud microphysics occur on very small
scales. Unfortunately, however, the spatial resolution of most aircraft-based mea-
surements typically are limited to m scales and above because of the high speeds
of research aircraft. Compounding this, there are problems associated with flow
distortions and compressibility effects in airborne measurements of scalar quanti-
ties in turbulence (Wyngaard 1988). Furthermore, some traditional techniques for
measuring fine-scale turbulence in the atmospheric boundary layer are hindered
by the presence of water droplets in clouds (e.g., hot-wire anemometry). Here we
briefly discuss several new approaches to making high-resolution measurements
of temperature and velocity fluctuations in turbulent clouds.

Recent advances in instrument design have made rapid measurements of tem-
perature possible in clouds, allowing centimeter scales to be resolved (Haman
et al. 1997, 2001). Temperature measurements at small scales (high sampling
rates) have been limited in the past by difficulties associated with the presence of
water droplets and their tendency to wet fine, hot-wire probes. These measure-
ments have provided a new picture of fine-scale temperature fluctuations inside
clouds. For example, all clouds investigated are characterized by sudden jumps be-
tween different temperatures, with the scales between jumps varying from tens of
meters to several centimeters. The sharp temperature gradients where diffusion is
active are possible sites for the formation of large supersaturations due to isobaric
mixing (Gerber 1991, Korolev & Isaac 2000). In addition, the measurements have
revealed that the power spectrum of temperature fluctuations exhibits a shallower
slope than−5/3 on spatial scales smaller than∼1 m. This is analogous to the en-
hanced variance observed in power spectra of liquid water content on sub-m scales
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(Davis et al. 1999, Gerber et al. 2001). For temperature, the enhanced variance
could be due, in part, to fluctuations in droplet growth rate in mixing zones and the
resultant heating due to the enthalpy of vaporization of water. On the other hand,
the shallower slope in temperature and liquid water content power spectra may be
a more general property of passive scalars or small inert particles suspended in
turbulent fluid, such as the viscous-convective subrange (Batchelor 1959; Jeffery
2000, 2001a; Warhaft 2000).

Methods for making velocity measurements on sub-m scales, such as using
balloon-borne sonic anemometers in clouds (Siebert & Teichmann 2000), are under
development. Also, it will be some time before fine-scale Lagrangian accelerations
in turbulent clouds can be measured directly. However, a method for quantifying
Lagrangian accelerations in clouds has been suggested by Hill (2002). As discussed
in Section 3, Hill has shown that in the large Reynolds number limit〈a2

L〉 ∝
ε̄3/2ν−1/2R1/4

λ . Hill has pointed out that bothε andurms can be measured using
radar, making a calculation of Rλ = u2

rms/(εν/15) and the variance of Lagrangian
acceleration possible.

7.2. Measurements of Spatially Dependent Clustering

Throughout this review we have returned repeatedly to the question of how droplets
are distributed in space. It is a fundamental element of theories of condensation
growth (e.g., Srivastava 1989), collision and coalescence (e.g., Pinsky & Khain
1997a), and radiative transfer in clouds (e.g., Kostinski 2001, Marshak et al. 1998,
Shaw et al. 2002a), and therefore is of great relevance. Until recently, however, the
question does not appear to have been addressed from an experimental perspective,
except in the pioneering work of Kozikowska et al. (1984). During the past decade,
there has been an explosion of experimental work on the fine-scale (less than 1 m)
properties of clouds (e.g., Baker 1992, Baumgardner et al. 1993, Borrman et al.
1993, Brenguier 1993, Chaumat & Brenguier 2001, Davis et al. 1999, Gerber et al.
2001, Kostinski & Shaw 2001, Pinsky & Khain 2001, Uhlig et al. 1998). Much of
this progress has been made possible by the advent of high-data-rate probes (e.g.,
Baumgardner et al. 1993, Brenguier et al. 1998, Gerber et al. 1994), which have
opened a new window on the small-scale features of clouds.

Several new instruments that allow cloud-droplet measurements with cm-scale
resolution or better are the cloud particle imager (CPI) (Lawson & Cormack 1995),
which takes snapshots of small (2 to 50 mm3) volumes of cloud; the particle volume
monitor (PVM) (e.g., Gerber et al. 1994), which makes high-spatial-resolution
(cm-scale) liquid water content measurements; and the Fast FSSP (Brenguier et al.
1998), an improved version of a standard instrument, the FSSP-100. With the Fast
FSSP, pulse duration and interarrival times (due to droplets moving past a laser
beam) are measured with a 16 MHz clock or a distance of approximately 6µm
along the aircraft track. The area of the depth of field, where droplet size can
be measured, is 0.13 mm2, whereas the total sampling area is 3 mm2. Thus, the
total sampling volume for the Fast FSSP can be considered a long, narrow tube
(Chaumat & Brenguier 2001).
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Once an instrument sampling volume has been defined, it becomes necessary
to develop tools for quantifying the degree of randomness in the droplet spatial
distribution. One possible approach is to divide the volume—for example, the long
narrow tube from the Fast FSSP—into equally sized volume elementsV. Then
the number of droplets counted in each volume elementN becomes a countable,
random number. It is a property of the Poisson distribution that the variance in
droplet counts is equal to the mean number of droplet counts. Therefore it is
natural to define the clustering index (CI ) as the variance-to-mean ratio,

C I (V) = (δN)2

N̄
− 1, (20)

whereN is the random number of droplets in a volume,N̄ is the mean number of
droplets, and(δN)2 ≡ (N − N̄)2 is the variance. TheCI (also fishing test) was first
applied to the analysis of cloud-droplet spacing by Baker (1992). TheCI is zero for
the Poisson distribution (for any given test volumeV) and becomes positive when
positive spatial correlations are dominant inV. It has been used by several groups
to quantify the degree of droplet clustering in clouds (Baker 1992, Chaumat &
Brenguier 2001, Uhlig et al. 1998, Vaillancourt et al. 2002), with various results.
Baker (1992) analyzed high-frequency measurements from a particle detection
probe (FSSP) and showed that in mixing regions theCI can become very large,
illustrating the strong correlations between droplet positions. He argued that for
some data series the clustering was anomalously large at small scales, suggesting
that some mechanism was operating to cause enhanced droplet clustering.

An especially attractive approach for investigating the spatial distribution of
cloud droplets is in-line holography (e.g., Borrmann & Jaenicke 1993, Kozikowska
et al. 1984). The technique also can be extended to three-dimensional velocime-
try, as has been done in laboratory flows (e.g., Pu & Meng 2000). Borrmann et al.
(1993) and Uhlig et al. (1998) used a holographic imaging system to study the three-
dimensional distribution of cloud droplets in low stratus. In the earlier paper, they
reported, based on a single hologram, no deviation from perfect randomness. Based
on an analysis of theCI and interdroplet frequency distributions, however, Uhlig
et al. (1998) concluded that there were significant departures from uniform proba-
bility of particle positions. In both cases the turbulence was not quantified, and it is
not clear to what extent entrainment and mixing contributed to this departure from
pure randomness. In all of the holography studies, the amount of data obtained was
limited by the time-consuming data processing, which involves reconstruction of
the hologram and subsequent measurements of particle position. In spite of this,
a significant advantage of the holography approach is the ability to measure di-
rectly the three-dimensional distribution of droplets, thereby avoiding difficulties
associated with the projection into two or one dimension (Holtzer & Collins 2002).

Chaumat & Brenguier (2001) have conducted the most thorough study to date
of droplet clustering in turbulent clouds, having analyzed data from many traverses
through cumulus clouds during the Small Cumulus Microphysics Study (SCMS).
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The data were obtained using the Meteo-France Fast FSSP, described previously,
and an example of a single traverse is shown in Figure 2. A primary goal was to
determine the degree of droplet clustering that occurs on small scales as a result of
factors such as particle inertia. Therefore, they were careful to confine their analysis
to undiluted cloud cores to minimize the effects of mixing on the cloud-droplet
spatial distributions. Their general conclusion was that the degree of clustering on
cm scales and below is within the limits of uncertainty of theCI. Furthermore,
they argued that even if the the small degree of clustering observed was real it
would be insufficient to cause any significant change in the width of the droplet
size distribution.

In a study using a single traverse during SCMS, Kostinski & Shaw (2001)
searched for scale-dependent clustering of droplets in a core region of the cloud
where mixing was expected to be negligible. They argued that a scale-localized
measure of clustering must be used to do this unambiguously. For example, they
argued that clustering on a given scale can be masked by “scale-memory” of instru-
ment resolution when theCI is used. This is because theCI represents contribu-
tions from a range of scales (including all scales below the instruments’ resolution
limit) and therefore possesses an inherent volume dependence. Indeed, the ex-
plicit link betweenCI and the scale-localized pair correlation function is given by
the correlation-fluctuation theorem (e.g., Landau & Lifshitz 1980, Section 116;
Kostinski & Jameson 2000; Shaw et al. 2002b)

(δN)2

N̄
− 1 = n̄

∫ V

0
η(V ′) dV′. (21)

Hence, theCI is said to contain memory of all scales within volumeV. However,
Equation 21 gives a clear approach for obtaining a scale-localizable measure of
droplet clustering fromCI. Using the pair correlation function, Kostinski & Shaw
(2001) concluded that statistically significant clustering was present at centimeter
scales and below, thereby providing evidence for fine-scale droplet-turbulence in-
teractions in the atmosphere. The scales identified as having positive correlations
correspond to those expected for finite droplet inertia. In the study by Kostinski
& Shaw (2001), no conclusions were drawn on whether the magnitude of the
clustering was sufficiently large to affect cloud processes such as condensation
growth or collision-coalescence. As a final note, we remark that Holtzer & Collins
(2002) have recently demonstrated that when a three-dimensional field of droplets
is sampled in two or one dimension (as with the Fast FSSP), the pair correlation
function is strongly suppressed at scales less than the averaging scale of the in-
strument. For pair correlation functions following a power law dependence with
r (e.g., Balkovsky et al. 2001, Reade & Collins 2000), they provided an inver-
sion technique for estimating the full three-dimensional function needed for the
collision rate modifications discussed in Section 6.

An example of the one-dimensional pair correlation function for cloud droplets
is shown in Figure 8. It corresponds to the entire traverse shown in Figure 2 and
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Figure 8 The one-dimensional pair correlation function for the cumulus cloud tra-
verse shown in Figure 2. At large scales, the pair correlation function decays to zero,
as does the autocorrelation function. The enhanced clustering on millimeter and cen-
timeter scales is consistent with the inertial clustering hypothesis. Scales below 1 mm
are lost as a result of the finite resolution of the instrument. Adapted from Shaw et al.
(2002b), data courtesy of J.-L. Brenguier, Meteo-France.

therefore accounts for spatial correlations up to scales of 100 m (above which the
pair correlation function goes to zero, as expected) as well as strong correlations on
centimeter scales and below. The enhanced clustering on millimeter and centimeter
scales is consistent with the inertial clustering hypothesis, which would suggest
that the clustering continues to increase at scales below 1 mm. This is not detected
because of the finite resolution of the instrument.

Using a different approach to analyze Fast FSSP data from SCMS, Pinsky
& Khain (2001) also concluded that there was significant droplet clustering on
centimeter scales and below. They took the viewpoint of an inhomogeneous Pois-
son process, with the large-scale fluctuations in the mean droplet number density
modeled by a Fourier series with coefficients weighted for best fit. The remaining
small-scale fluctuations were found to be in excess of those expected, with the root
mean-square fluctuation equal to approximately 30% of the mean number density.
Fluctuations between 0.5 and 5 cm were found to be dominant, thus providing
evidence for the droplet inertial clustering mechanism.

Fine-scale measurements of liquid water content, which is proportional to∫ ∞
0 f (r )r 3dr , have been obtained with the PVM instrument (Gerber et al. 1994).



1 Nov 2002 18:41 AR AR159-FM35-10.tex AR159-FM35-10.sgm LaTeX2e(2002/01/18)P1: GJB

TURBULENCE AND CLOUD PHYSICS 219

These observations have revealed strongly enhanced variability of liquid water
content (Davis et al. 1999, Gerber et al. 2001, Marshak et al. 1998) in turbulent
clouds. By enhanced, it is meant that the slope of the scalar-variance power spec-
trum is much shallower than−5/3 at frequencies corresponding to spatial scales
of less than a few meters. A power spectrum of liquid water content is shown
in Figure 7. The one-dimensional scalar spectrum for liquid water content data
obtained during the SOCEX field experiment is shown as open squares (Marshak
et al. 1998). The observed spectrum is an order of magnitude larger than the typi-
cal inertial-convective and viscous-convective scaling, which is shown by the solid
line (Jeffery 2001b). This variance has been attributed to several causes, including
enhanced entrainment of dry air at small scales (Gerber et al. 2001) and droplet
clustering (Davis et al. 1999), but no details were given regarding the physical
mechanisms for such processes. Mazin (1999) has pointed out that the observed
enhancement in variability at small scales occurs as turbulence frequencies become
greater than the inverse of the phase relaxation time and therefore is in agreement
with the theory of stochastic condensation.

In Section 4.2 Jeffery’s (2000, 2001b) spectral scaling for liquid water con-
tent fluctuations due to finite droplet inertia was discussed. Associated with the
increased scalar dissipation rate, the theory suggests that the inertial-convective
subrange is extended to smaller scales, with transition to the viscous-convective
subrange occurring at scales of approximately 60λk or several centimeters. This,
however, is in contrast to observations of liquid water content fluctuations in tur-
bulent clouds, where the transition to a regime with enhanced variance is observed
to take place at scales of approximately 2–5 m (see Figure 7). An explanation for
these observations has been proposed by Jeffery (2001a,b), who argues that the new
regime shown in Figure 7 is a manifestation of number density fluctuations due to
both finite droplet inertia and the condensation process. In effect, particle inertia
leads to an enhanced viscous-convective subrange, but which begins at frequencies
higher than observed. When the condensation process is accounted for, however,
a production range lying between the inertial subrange and the viscous-convective
subrange exists. This tends to enhance scalar variance at larger scales (up to tens of
centimeters, an order of magnitude larger than for inertial effects alone), thereby
providing a plausible theory for explaining observations of liquid water content
fluctuations. The evaporation/condensation model of Jeffery (2001a) predicts a
fundamental inhomogeneity in vertical fluctuations of liquid water content, with
their magnitude increasing with height above cloud base. As pointed out by Jeffery,
this is in qualitative agreement with many observational and computational studies
of turbulent clouds.

An additional technique for determining the spatial distribution of particles
in clouds is analogous to in X-ray scattering from liquids, where Bragg scatter-
ing measurements yield the Fourier transform of the pair correlation function.
By investigating Bragg scattering of coherent radiation emitted by radars, it is
possible, in principle, to detect droplet clustering that occurs on spatial scales of
similar magnitude as the radar wavelength (Kostinski & Jameson 2000). Recently,
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several investigators have noted anomalous Bragg returns in radar measurements
of small cumulus clouds (Baker & Brenguier 1998, Knight & Miller 1998) and
smoke plumes (Rogers & Brown 1997). Indeed, Jameson & Kostinski (2000) point
out that the radar measurements by Knight & Miller (1998), which show a cor-
relation between Rayleigh and Bragg returns in some cases, support the idea that
scale-dependent correlations in particle positions may be responsible for the Bragg
signal. Baker & Brenguier (1998) suggest that enhanced Bragg signals that existed
even when strong mixing was not present may be caused by clustering of droplets
due to their finite inertia. In a recent contribution, Erkelens et al. (2001) also argue
that fluctuations in liquid water content can produce coherent (Bragg) scattering
that exceeds the incoherent component typically considered. They compared a
model of liquid water content fluctuations due to mixing to radar returns from cu-
mulus clouds and smoke and found evidence for the existence of Bragg scattering.
Significant Bragg scattering also occurred in cloud regions where no mixing had
taken place and they suggest that this is evidence for spatial clustering due to the
finite inertia of cloud droplets.

8. FINAL REMARKS

We summarize by reviewing several of the fundamental dimensionless numbers
that are expected to be of relevance to the fluid mechanics of small-scale processes
in atmospheric clouds: turbulence Reynolds number Rt, droplet Stokes number Sd,
and turbulence acceleration ratio Ff. Obviously other quantities such as Richardson
number are relevant in certain cases, but they have not been focused on here.
The parameter space (in terms of the three variables mentioned) occupied by the
archetype convective cloud is quite large. For a typical convective cloud, such as
a cumulus with moderate energy dissipation rates and realistic droplet sizes, we
can estimate Sd ∼ 10−3–10−1, F f ∼ 10−1–101, Rt ∼ 106–108.

An additional dimensionless number of relevance to the thermodynamics of tur-
bulent atmospheric clouds is the supersaturation Damk¨ohler number Ds = τ f /τs.
This, essentially, determines the spatial and temporal scales at which supersat-
uration in a turbulent flow can be considered well mixed. For typical cumulus
clouds the spatial scale at which Ds ∼ 1 is on the order of several meters. This
implies, therefore, that cloud droplet growth is influenced by turbulent fluctuations
occuring in both large and small Damk¨ohler number limits.

Although much work remains, at least in principle the parameter range for
Stokes number can be attained in numerical and laboratory studies of turbulent
flows containing appropriately sized particles. It is the Reynolds number simi-
larity and the resulting intermittency in the acceleration ratio that places atmo-
spheric clouds in a truly unique regime within the parameter space, separate from
many multiphase flows existing in laboratories or industrial processes. For exam-
ple, simulated turbulence and laboratory turbulence typically are limited to lower
Reynolds numbers and much higher energy dissipation rates (with some excep-
tions). Therefore, we have considered how droplet-fluid interactions might change
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with Reynolds number. Several issues relating to the Reynolds number scaling
come to mind:

1. We know that intermittency ofε and Lagrangian fluid accelerations increases
with Reynolds number (e.g., Hill 2002, Sreenivasan & Antonia 1997), but
what aspects of the droplet growth are affected by this?

2. Physical properties of coherent vortex structures at small scales are thought
to be strongly dependent on Reynolds number. How do these properties
change and how does this affect cloud processes?

3. The nature of passive scalars advected by turbulent flows is known to be
strongly linked to the Reynolds number (e.g., Warhaft 2000). How will
this scalar intermittency manifest itself in turbulent clouds? For example,
ramp-cliff structures in the thermodynamic fields such as temperature or
supersaturation likely are related to Reynolds number.

We emphasize here one of the special features of multiphase flows in general and
clouds in particular: Essential processes that govern the evolution of the entire sys-
tem take place at the scale of the particle size, which is smaller than the dissipation
scale. Thus, the physical nature of turbulence at the smallest scales potentially is of
vital importance to the cloud problem. Furthermore, it is well established that the
small scales in turbulent flows are strongly dependent on the turbulence Reynolds
number, so we expect that this will be an important parameter to consider. This is
not to say that the large-scale structure of the cloud is not of equal importance: For
example, fundamental work remains to be done on the role of entrainment of dry,
noncloudy air on the evolution of clouds and the droplet distributions therein. An-
other aspect of the problem is the macroscopic variation of relevant dimensionless
parameters throughout the cloud. For example, it is known that cloud boundaries
typically contain the highest energy dissipation rates, whereas cloud cores may
only contain weak turbulence.

We have reviewed the essential physics of fine-scale turbulence and its effects
on clouds and have focused on two routes by which turbulence interacts with
the evolution of droplet size distributions in atmospheric clouds. First, turbulence
influences droplet growth via the thermodynamic process of condensation in a
supersaturated environment. Second, turbulence influences droplet growth via the
dynamical interaction of droplets in the collision-coalescence process. Understand-
ing the nature of these processes, and separating the two in actual measurements,
is a significant challenge that remains before us. No doubt the simultaneous use
of theoretical, computational, laboratory, and fieldwork tools will be necessary to
make continued progress.
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