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ABSTRACT 

The paper presents large-eddy simulation (LES) formalism, along with the 
various subgrid-scale models developed since Smagorinsky’s model. We show 
how Kraichnan’s spectral eddy viscosity may be implemented in physical space, 
yielding the structure-function model. Recent developments of this model that 
allow the eddy viscosity to be inhibited in transitional regions are discussed. We 
present a dynamic procedure, where a double filtering allows one to dynamically 
determine the subgrid-scale model constants. The importance of backscatter 
effects is discussed. Alternatives to the eddy-viscosity assumption, such as scale- 
similarity models, are considered. Pseudo-direct simulations in which numerical 
diffusion replaces subgrid transfers are mentioned. Various applications of LES 
to incompressible and compressible turbulent flows are given, with an emphasis 
on the generation of coherent vortices. 

1. LARGE-EDDY SIMULATION FORMALISM 
In industrial or environmental applications, where Reynolds numbers are usu- 
ally very high, direct-numerical simulations (DNS) of turbulence are generally 
impossible, because the very wide range that exists between the largest and 
smallest dissipative scales cannot be explicitly simulated even on  the largest 
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46 LESIEUR & METAIS 

and most powerful computers. People are usually more interested in the larger 
scales of the flow: those that control turbulent diffusion of momentum or heat. 
In the large-eddy simulation (LES) approach, one gets rid of the scales of 
wavelength smaller than the grid mesh Ax by applying an appropriately cho- 
sen low-pass filter characterized by the function G to the flow to eliminate the 
fluctuations on subgrid scales. The filtered field is defined, for any quantity f 
(scalar or vectorial), as 

Here, we choose to take the filter G to be independant of the position x, which 
simplifies much of the formalism. We work mainly with regular orthogonal 
grids of mesh Ax, but we show how the formalism may be extended to irregular 
meshes for one of the models presented later (the structure-function model). We 
present here the formalism for incompressible turbulence of constant density, 
and we give some indications of the way compressibility may be handled. For 
more details about the LES philosophy, the reader is referred to Herring (1979), 
Rogallo & Moin (1984), and Lesieur (1990). 

One can easily check that the filter defined by Equation (1.1) commutes with 
temporal and spatial derivatives, so that the continuity equation 

ail. '=O 
ax , 

holds for the filtered field. One considers the Navier-Stokes equations in the 
form: 

au,  a 1 ap a 
po axi ax, at ax, 

- + - (u .u. )  = -- - + - [ u (2 + 31. 1 J  

After applying the filter, one gets 

where the subgrid-scale tensor Ti, is given by 

(1.5) 

Contrary to some other authors, we have chosen to define Tij  with this sign, 
because p T j  is the subgrid-scale stress, which is usually positive except where 
the eddy viscosity is negative (see below). Equations (1.4) resemble Reynolds 
equations for the mean flow, but the subgrid-scale tensor is different, and large- 
eddy simulations deal usually with rapidly fluctuating fields in space and time 
if Ax is small enough. 

T. .  = E.E. -= 
' J  I J 1 J '  
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LARGE-EDDY SIMULATIONS OF TURBULENCE 47 

If the fluctuation f’ of f with respect to 7 is introduced (f = + f’), the 
subgrid-scale tensor may be written as the sum of i i i i i j  -=(called Leonard’s 
tensor) and -(i i iu) + Q j u ;  + uiu)) .  The Leonard tensor is an explicit term that 
can be computed in terms of the filtered field, but the other terms are unknown. 
In fact, it seems preferable to model Zj as a whole, without splitting it into 
parts. 

Most subgrid-scale models make an eddy-viscosity assumption (Boussi- 
nesq’s hypothesis) to model the subgrid-scale tensor: 

--- 

where 
S i j = - ( L + $ )  - 1 aa.  

2 ax, 

is the deformation tensor of the filtered field (we have adopted Einstein’s con- 
vention of summation over repeated indices). The LES equation (1.4) then 
becomes 

Here, we have introduced a modified pressure P = p - (1/3)poz[, which 
will be determined with the help of the filtered continuity equation (1.2) by 
taking the divergence of Equation (1.8). This involves, in particular, the spatial 
variations of the eddy viscosity ut. 

Let us now consider a passive scalar T convected by the flow, where K is the 
moleculgr diffusivity. The scalar satisfies 

aT a a 
at ax, ax, 
- + - ( T u j )  = - 

If the filter is applied to this equation, one finds 

a l  a - 
at ax, 
- + - ( T i i j )  = - 

The last two terms are modeled with an eddy diffusivity Kt to yield 

(1.10) 

(1.11) 

The turbulent Prandtl number P r o  = ut/Kt is specified below. 
Equations (1.8) and (1.1 1) may be generalized to the Navier-Stokes equa- 

tions within the Boussinesq approximation for a density-stratified fluid in the 
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48 LESIEUR & METAIS 

following way: The momentum balance (1.3) remains the same, but has an 
added gravity term (p/po)g on its right-hand side, where p is the static pres- 
sure and p is the total density that satisfies Equation (1.9) where T has been 
replaced by p. After applying the filter to both equations, and introducing 
eddy coefficients, one obtains the generalized LES Boussinesq equations, with 
a term (p/po)g on the right-hand side of (1.8). The filtered total density p still 
satisfies Equation (1.1 1). 

The question is now to determine the eddy viscosity wt(x, t). Notice that this 
eddy-viscosity assumption, within the framework used in this paper, is highly 
questionable and has never been verified experimentally or numerically (see 
e.g. Liu et a1 1994). One expects, however, that the information derived using 
this concept may help to improve it. For instance, this is the philosophy of the 
dynamic model discussed below. 

Whichever subgrid-model is chosen, the LES problem is not well posed from 
a mathematical point of view, if, at the time the simulation starts, there is no 
knowledge of the flow parameters in the subgrid scales. Indeed, we know from 
unpredictability theory that uncertainty in the small wavelengths of the motion 
( < A x )  will, through an “inverse error cascade,” gradually contaminate the 
larger scales of turbulence, up to the energy-containing range. This was shown 
on the basis of two-point closures of turbulence by Lorenz (1969) for two- 
dimensional turbulence, and by Leith & Kraichnan (1972) for forced two- or 
three-dimensional turbulence. Their work was extended by Mktais & Lesieur 
(1986) to freely decaying turbulence. This error cascade corresponds to a 
decorrelation between two different realizations of the flow that differ initially 
only in the smallest scales. So, however the subgrid scales are handled and 
whatever the precision of the numerical methods used, the LES prediction will 
gradually decorrelate from reality-a point noted by Herring (1979). This is 
not a problem insofar as LES predicts the correct topology and statistics of the 
flow; it is a version of Heisenberg’s uncertainty principle for turbulence. For 
certain industrial applications, it may be important to predict where vortices 
will occur (for instance, thermal fatigue or corrosion of a material in contact 
with flows in nuclear engineering or hypersonic aerodynamics). Likewise, 
meteorological forecasting relies on precise vortex location: It is certainly of 
interest for the local population to know whether or not a cyclone will pass over 
their city. 

2. SMAGORINSKY’S MODEL 
The most widely used eddy-viscosity model was proposed by the meteorol- 
ogist Smagorinsky (1963). Smagorinsky was simulating a two-layer quasi- 
geostrophic model in order to represent large (synoptic) scale atmospheric 
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LARGE-EDDY SIMULATIONS OF TURBULENCE 49 

motions. He introduced an eddy viscosity that was supposed to model 
three-dimensional turbulence with approximately three-dimensional (3D) 
Kolmogorov k-5/3 cascade in the subgrid scales. However, Smagorinsky’s 
model turned out to be too dissipative for large-scale 2D dynamic meteorology, 
in which the use of high-order Laplacian dissipative operators is preferred (see 
Basdevant & Sadourny 1983). On the other hand, Smagorinsky’s model still 
proves very popular for engineering applications, because of the pioneering 
work of Deardorff (1970) for channel flow. 

In Smagorinsky’s model, a sort of mixing-length assumption is made, in 
which the eddy viscosity is assumed to be proportional to the subgrid-scale 
characteristic length scale Ax and to a characteristic turbulent velocity based 
on the second invariant of the filtered-field deformation tensor. The model is 

= (CSAX)~~SI ,  (2.1) 

where the local strain rate is defined by Is1 = (23ijSij)1/2. We recall that Si, is 
defined in (1.7). If one assumes that the cutoff wavenumber in Fourier space, 
kc = n / A x ,  lies within a k-5/3 Kolmogorov cascade E ( k )  = C ~ e ~ / ~ k - ~ / ~  
(where CK is the Kolmogorov constant), one can adjust the constant Cs so that 
the ensemble-averaged subgrid kinetic-energy dissipation is identical to e. An 
approximate value for the constant is then (see e.g. Lilly 1987 for a review): 

For a Kolmogorov constant of 1.4, which is obtained by measurements in the 
atmosphere (Champagne et a1 1977), this yields Cs M 0.18. Most workers 
prefer Cs = 0.1 (which represents a reduction by nearly a factor of 4 of the 
eddy viscosityfia value for which Smagorinsky ’s model behaves reasonably 
well for free-shear flows and for channel flow (Moin & Kim 1982). The lat- 
ter require damping functions close to the wall. Despite increasing interest 
in developing more advanced subgrid-scale models, Smagorinsky’s model is 
still successfully used, as in the recent LES of shear-stratified homogeneous 
turbulence simulations by Kaltenbach et al(1994). 

We will see later how, in the “dynamic model,” Ci may be calculated locally 
in space and time. With CS = 0.1, Friedrich and coworkers used Smagorinsky’s 
model for a backstep flow (Arnal & Friedrich 1992) and for simulating turbulent 
pipe flow (Unger & Friedrich 1994). In the latter case, an ansatz for the eddy 
viscosity is used, in which C s A x  in (2.1) is replaced by min(l,, C s A x ) ,  where 
the length 1, is the mixing length in the near-wall region determined from 
Nikuradse (1933). They conclude (see Friedrich & Nieuwstadt 1994) that 
there are problems in reproducing the experimental data, due to their inability 
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50 LESIEUR & METAIS 

to predict the energy transfer mechanisms at the wall. This is one of many 
examples showing that Smagorinsky’s model is too dissipative close to a wall. 
In particular, it does not work for transition in a boundary layer on a flat plate 
for flows that start with a laminar profile to which a small perturbation is added: 
The flow remains laminar, due to an excessive eddy viscosity coming from the 
mean shear. 

We present now a class of new models for large-eddy simulations that 
are derived from the philosophy of Kraichnan’s eddy viscosity in spectral 
space. 

3. KRAICHNAN’S SPECTRAL EDDY VISCOSITY 
In this section, we work in Fourier space and consider three-dimensional 
isotropic turbulence. Let kc be the cutoff wavenumber already introduced. 
In this case, the filter is sharp in Fourier space; all modes with k > kc  are sup- 
pressed; the others are unaffected. Kraichnan worked on two-point closures 
of turbulence (or, equivalently, on stochastic models), where closed evolution 
equations were obtained for the kinetic-energy spectrum E ( k ,  t )  (see Lesieur 
1990 for a review). The equations have the form 

(3.1) 

where t ( k ,  p ,  q) is quadratic with respect to E and characterizes the transfer 
associated with the triad ( k ,  p ,  q) such that k ,  p ,  and q are the sides of atriangle. 
The symbol Ak means that the integration includes only modes obeying this 
triangle condition. Fork < kc ,  Equation (3 .1)  may be written as 

where the right-hand side corresponds to “explicit transfers” involving triads 
such that p and q are smaller than k c .  The spectral eddy viscosity ut(k, k c )  is 
obtained by dividing the subgrid-scale transfers with at least p or q greater than 
kc  in the right-hand side of (3.1) by -2k2E(k ,  t ) .  Using the Eddy-Damped 
Quasi-Normal Markovian (E.D.Q.N.M.) approximation, due to Orszag (1970; 
see also Andr6 & Lesieur 1977 and Lesieur 1990), and assuming that kc  
lies within a Kolmogorov cascade, we find that the eddy viscosity may be 
written 

E ( k c )  ‘I2 
vt(k,  k c )  = 0.441 C K - ~ ’ ~  - [ kc ] u‘(k)7 (3 .3)  

where E ( k c )  is the kinetic-energy spectrum at the cutoff kc ,  and u : ( k / k c )  
is a nondimensional eddy viscosity, which is constant and equal to 1 for 
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LARGE-EDDY SIMULATIONS OF TURBULENCE 5 1 

k / k c  < M  0.3, butincreasesforhigherkuptok/kc = 1 (cuspbehavior, Kraich- 
nan 1976). In (3.3), the normalization value of the eddy viscosity [ E ( k c ) /  k ~ ] ’ / ~  
is the product of k,’ - Ax with [ k c E ( k ~ ) ] ’ / ~ ,  a characteristic velocity at kc .  
The constants and the form of u: need to be determined by E.D.Q.N.M. or some 
other theory. 

At the level of kinetic-energy exchanges, this formulation of the spectral 
eddy viscosity includes all backscatter effects in the following sense: When 
kinetic energy is injected around a particular wavenumber k l ,  for the decay- 
ing case, one can show with the aid of expansions of Equation (3.1) in terms 
of the small parameter k / k ,  << 1 that the transfer is proportional to k4, and 
hence a spectrum proportional to k4 is produced at low wavenumbers k << kl 
(see Lesieur & Schertzer 1978). In two-dimensional turbulence, the equivalent 
is a k3 backscatter. Such a backscatter transfer occurs because of nonlinear 
resonance between two energetic modes in the neighborhood of k l .  This was 
also checked in a LES by Lesieur & Rogallo (1989), in which kl was close 
to k c .  It is remarkable that two-point closures are able to predict this in- 
frared spectral behavior. However, we must stress that very strong backscat- 
ter exists in the error inverse-energy cascade of the unpredictability problem 
mentioned above, as shown in MCtais & Lesieur (1986) (see also Lesieur 
1990, p. 312). 

Considering again the eddy viscosity (3.3), one can show that, for k << kc 
(both modes being larger than kl and in the inertial range), the backscatter 
due to subgrid-scale modes is negligible. Indeed, its relative importance in 
terms of transfers is, according to E.D.Q.N.M. theory, ( k / k ~ ) ~ [ E ( k ~ > / E ( k ) ] ,  
which is very small because E ( k c )  << E ( k )  (see Lesieur 1994). The cusp 
results from the difference between a “drain,” which sends energy to the sub- 
grid scales, and a “backscatter,” which injects energy back to the supergrid 
scales, so that the net effect is a positive eddy viscosity. For further develop- 
ments on the backscatter in a Kolmogorov cascade, see Mason (1994). We 
mention also the work of Piomelli et a1 (1991), who looked numerically at 
backscatter effects in channel flow and in compressible isotropic turbulence. 
Notice that if kc is in the energy-containing range, the k4 backscatter plays an 
important role in the eddy viscosity, and further investigations are needed in 
this direction. The problem is that, in practice, these scales are not isotropic 
nor even homogeneous. Also, Leith (1990) proposes that, in a mixing layer, 
turbulence confined in small scales can, by backscatter, inject energy into the 
larger scales, where it may grow via the Kelvin-Helmholtz instability. This 
could apply to other types of instabilities as well, such as the Rayleigh-Taylor 
instability. 
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52 LESIEUR & METAIS 

For LES in Fourier space, the spectral eddy viscosity (3.3) is plugged into 
the Navier-Stokes equation for the velocity field Gi(k, t): 

(3.4) 

where Pij (k) is the projector onto the plane perpendicular to k, which allows 
the pressure to be eliminated in Fourier space. 

Kraichnan’s spectral eddy viscosity was first used for isotropic turbulence at 
low resolution (323) with no molecular viscosity by Chollet & Lesieur (1981). 
Higher resolution calculations (a3 and 1283) show that it gives reasonably good 
results for isotropic turbulence, but with a spectrum at the cutoff closer to 
than to k-5/3.  With such an eddy viscosity, one can study the evolution of three- 
dimensional isotropic turbulence at infinite Reynolds number for flows with an 
initial spectrum sharply peaking at kI .  In a preliminary stage, kinetic energy 
is going to cascade towards larger modes. As long as kc is not reached, the 
eddy viscosity is inactive because E ( k c )  = 0, and kinetic energy is conserved. 
When k c  is reached by fluctuations, eddy viscosity starts to act and transfers 
energy to the subgrid scales, with a spectrum close to K 2  at the cutoff. The 
spectrum then decays self-similarly. Meanwhile, a k4 backscatter is produced 
for k < kI .  The whole sequence was found in the LES of Lesieur & Rogallo 
(1989). The time for the cascade to catch up is independant of kc and of the order 
of t c  = 4 - 5 /uokI ,  where uo is the initial rms velocity. If one extrapolates the 
subgrid-scale spectrum by a power law of the order of or shallower than kV2 
extending up to k -+ 00, the subgrid-scale and total enstrophies will diverge 
at tc, indicating a singularity at a finite time. The results are the same for 
a subgrid-model that allows a k-5/3 spectrum at the cutoff, such as with the 
structure-function model presented below. This type of enstrophy singularity 
at tc , with conservation of energy before tc and inviscid dissipation at a finite rate 
after, had been predicted with E.D.Q.N.M. theory by Andre & Lesieur (1977). 

The spectral eddy viscosity gives satisfactory results even if the large scales 
are neither isotropic nor homogeneous. For instance, it was used in stably strat- 
ified turbulence by Mttais & Lesieur (1989), who studied the inhibiting effects 
of stable stratification on the vertical diffusion of an initially thin horizontal 
layer of passive pollutant. Batchelor et a1 (1992) used Kraichnan’s spectral- 
cusp model for the LES of homogeneous turbulence generated by buoyancy 
forces. In particular, a self-similar solution predicted theoretically was thus 
confirmed through a long time integration of the equations of motion. For a 
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temporal incompressible mixing layer, the model allows reproduction of quasi- 
two-dimensional or helical-pairing vortices, depending on the initial pertur- 
bations. The authors have carried out large-eddy simulations of a temporal 
mixing layer (periodic in the streamwise and spanwise directions, u = 0) using 
pseudo-spectral methods (963 points) and the eddy viscosity (3.3). The initial 
flow is a parallel hyperbolic-tangent laminar velocity profile plus a weak ran- 
dom perturbation. The length of the domain corresponds to four fundamental 
wavelengths. When the perturbation is quasi-two-dimensional, one observes 
the formation of four quasi-two-dimensional Kelvin-Helmholtz vortices, which 
pair and stretch the intense longitudinal hairpin vortices that form between them 
(Figure 1). The maximum vorticity of the latter is six times the spanwise basic 
vorticity. The topology resembles that in the experiments of Bernal & Roshko 
(1986) and Huang & Ho (1990) and in the DNS of Metcalfe et a1 (1987) and 
Rogers & Moser (1992). For a discussion of mixing-layer dynamics, the reader 
is referred to Ho & Huerre (1984). 

When the initial perturbation is three dimensional and quasi-isotropic (but 
still of low amplitude), on the contrary, the helical pairing found in the DNS 
of Comte et a1 (1992) using spectral methods is recovered here. The vortex 
topology in both cases (quasi-2D or helical pairing) is very well represented 
by the low-pressure regions. Helical pairing was first observed experimen- 
tally by Chandrsuda et a1 (1978). Numerically, the DNS of Cain (1981) (who 
called the phenomenon “local pairing”) and the vortex-filament method-based 
simulations of Meiburg (1986) display this anomalous interaction. The pair- 
ing corresponds, in our simulations, to an out-of-phase stretching of vortex 
filaments by the ambient deformation. Helical pairing was also found by Pier- 
rehumbert & Widnall(l982) on the basis of secondary-instability theory, with 
a basic flow consisting of 2D Stuart vortices. An analogous study was done by 
Corcos & Lin (1984), who took as the initial state Kelvin-Helmholtz vortices 
resulting from a 2D DNS. In these secondary-instability studies, helical pairing 
is much less amplified than the “translative instability,” where the big basic 
billows oscillate in phase in the spanwise direction. Finally, helical-pairing in 
a temporal mixing layer was shown to be inhibited by compressibility above 
a convective Mach number ~ 0 . 7  (Fouillet 1991). At higher Mach numbers, 
the flow forms large staggered A-shaped vortices, as obtained by Sandham 
& Reynolds (1991) in DNS, which are a result of oblique modes being more 
unstable than 2D modes. 

However, a spectral eddy viscosity is difficult to employ when the geometry 
of the problem obliges one to work in physical space. First, it is possible to get 
rid of the cusp by averaging the spectral eddy-viscosity in k. The requirement 
that the subgrid-scale kinetic-energy dissipation be equal to c (see Leslie & 
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Figure I LES using Kraichnan’s eddy viscosity of a temporal incompressible mixing layer. (a) 
Quasi 2D perturbation, with the isosurface of vorticity modulus equal to 2/3 of the maximum initial 
spanwise vorticity oi; (6) 3D perturbation, with o; isosurface. (Courtesy J Silvestrini 1994.) 
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Quarini 1979) then yields 

2 
(3.5) 

instead of (3.3)-a result that is not far from Smagorinsky's model or from 
Yakhot & Orszag's (1986) Renormalization Group (RNG) based model. In 
the latter approach, one considers the Navier-Stokes equations with random 
forcing on a wavenumber span from 0 to A, with no energy above A. A 
cutoff wavenumber kl = Ae-' with I << 1 can then be defined, and nonlinear 
exchanges across kl are calculated using nonlinear perturbation techniques. 
The process is iterated in such a way that kl 3 0. In this limit, and with a 
Kolmogorov spectrum extending from 0 to 00, an eddy viscosity of the same 
type as in (3.5) is defined. Afterwards, the same energy arguments are applied to 
determine the constant. There is, however, some concern about the convergence 
of the method in the k-5/3 range and over its applicability to unforced turbulence. 

For isotropic turbulence, it can be checked that the spectral cusp in the eddy 
viscosity does exist (Lesieur & Rogallo 1989; see also MBtais & Lesieur 1992). 
Consider a large-eddy simulation of isotropic turbulence with a cutoff kc, and 
define a fictitious cutoff k& = kc/2. For k < k&, one can then calculate the 
explicit kinetic-energy transfers across k&, involving triads with p and (or) q 
between k& and kc. It is possible to compute the total subgrid transfers across 
k&, by adding the subgrid transfer across kc evaluated with the spectral eddy 
viscosity. From this, the eddy viscosity u,(k, k&) may be evaluated, and once 
divided by [ E ( k & ) / k & ] 1 / 2 ,  it yields u:(k/k&).  Such a determination confirms 
the existence of both plateau (at the value predicted by E.D.Q.N.M.) and cusp. 

Further evidence of the cusp was found by Domaradzki et a1 (1987) in a 
DNS of isotropic turbulence. Their flow was too viscous to allow for an inertial 
range. They calculated an eddy viscosity using energy transfers across k,/2, 
where k,, is the maximum wavenumber. Although the spectrum does have 
a cusp, the plateau is very low and even slightly negative at low k, indicating 
some backscatter. 

If we consider a scalar T transported by the flow (with molecular diffusion), 
E.D.Q.N.M. analysis applied to the scalar spectrum E T @ )  (see LarchevCque 
et al 1980 and Herring et a1 1982) allows one to define a spectral eddy diffu- 
sivity Kt (k, kc), which scales with [ E ( k c ) / k ~ ] ' / ~  and displays a plateau-cusp 
behavior. The turbulent Prandtl number ut/Kt is approximately constant, with a 
best fit of 0.6 if one takes the Corrsin-Oboukhov constant CCO equal to 0.67, 
as determined experimentally (see Champagne et a1 1977). The latter constant 
arises in the inertial-convective range where the scalar spectrum is 

, (3.6) -1/3k-5/3 ET@) = CCOETE 
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where ET is the scalar dissipation rate. The reader is referred to Lesieur (1990, 
chapter 8) for more details. Unfortunately, the procedure given above for 
determining the eddy viscosity via a fictitious cutoff k c / 2  does not produce 
the plateau-cusp shape. Rather, the spectral eddy diffusivity has a logarithmic 
decay in k space instead of the plateau range predicted by E.D.Q.N.M. for 
the eddy viscosity (Lesieur & Rogallo 1989, MCtais & Lesieur 1992). As a 
consequence, the turbulent Prandtl number in Fourier space increases from 0.3 
to 0.6. Surprisingly, one recovers the plateau-cusp shape of the eddy diffusivity 
for stably stratified turbulence (MCtais & Lesieur 1989), for which the isotropy 
assumption is no more fulfilled. We stress that the value Pr@) = 0.3 was chosen 
by Moeng (1984) for the LES of turbulent thermal convection in the atmosphere. 

A last remark can be made about [E ( k c ) /  kc] ' l2  scaling of the eddy viscosity. 
As already stated, such scaling assumes the existence of a k-5/3 Kolmogorov 
spectrum. When the spectrum is proportional to k-" with m I 3, MCtais & 
Lesieur (1992) proposed, again on the basis of E.D.Q.N.M. theory, that the 
eddy viscosity should be, fork << kc ,  

5 - m  
m + l  

bo M 0 . 3 1 - & E % C ~ - ~ / ~  ut (3.7) 

E Lamballais (1995, private communication) has recently used such an expres- 
sion (with a cusp) for incompressible channel flow computations carried out 
in Grenoble. These simulations are spectral in planes parallel to the walls, so 
that E ( k c )  may be evaluated by averaging on these planes, which permits the 
determination of m. For m > 3, he takes a zero eddy viscosity. This yields 
good results (to second order) for the behavior at the wall, which compare very 
well with the dynamic-model predictions (see below). 

4. STRUCTURE-FUNCTION MODEL 
In the structure-function model (MCtais & Lesieur 1992), one works in physical 
space using Equation (3.5) and a local kinetic-energy spectrum E,(kc)  (defined 
below), with kc = n/Ax. The eddy viscosity is then 

The mesh Ax is assumed constant, but one can generalize to nonuniform grids. 
The underlying idea is to take into account the local intermittency of turbulence 
and to reduce the eddy viscosity in regions where small-scale turbulence has 
not developed. The local spectrum at kc is calculated in terms of the local 
second-order velocity structure function of the filtered field 
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as if the turbulence is three-dimensionally isotropic, using Batchelor’s (1953) 
formula 

In the original Batchelor relation, the k integral was carried out from 0 to 00, 

but here one works with a filtered field ii whose spectrum is zero above kc. 
This yields, for a Kolmogorov spectrum, 

u ~ ~ ( x ,  AX) = 0.105 C,3/2 AX [Fz(x,  AX)]"^. (4.4) 

F2 is calculated with a local statistical average of square velocity differences 
between x and the six closest points surrounding x on the computational grid. In 
some cases, the average may be taken over four points parallel to a given plane; 
in a channel, for instance, the plane is parallel to the boundaries. When a scalar 
transported by turbulence is considered, an eddy diffusivity corresponding to a 
Prandtl number of 0.6 is chosen. 

The structure-function (SF) model works well for isotropic turbulence, where 
it gives a Kolmogorov spectrum at the cutoff. Figure 2 shows the compensated 
spectrum fr2I3k5l3E (k, t )  in the decaying case (resolution 963). The spectrum 
is approximately constant between k = 10 and k = 40, with CK M 1.4. 

. . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . 3i 
1.4 

0 10 20 30 40 

Wavenumber k 

Figure 2 LES of decaying turbulence showing the compensated kinetic-energy spectra obtained 
with the structure-function model (SF) and Smagorinsky’s model (Smag.) The compensated SF 
pressure spectrum is also plotted. 
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However, it rises too much at kc .  This is certainly due to the absence of a cusp 
in the eddy viscosity. (We return to this point in Section 6.) The kinetic-energy 
spectrum obtained with Smagorinsky’s model (CS = 0.2) is steeper than the 
SF spectrum and close to a k-2 slope. The SF pressure spectrum E ,  is also 
plotted in Figure 2, compensated according to Batchelor’s law 

E,,(k,  t )  = Cpr4’3k-7‘3 (4.5) 

This law can be obtained using the quasi-normal approximation to evaluate the 
fourth-order moments of velocity in the determination of the pressure second- 
order moment (fi(k)fi(k’)). The constant C p  was calculated by Monin & 
Yaglom (1975). They found C p  = a C$ with 

Notice the tiny plateau of the compensated pressure spectrum at the right value 
C p  corresponding to CK = 1.4 in Figure 2. Higher resolution LES should be 
performed to elucidate the nature of the pressure spectrum in the inertial range. 

Pressure fluctuations also contain valuable information on the flow topology 
because the core of the coherent vortices is known to be a pressure trough. Di- 
rect numerical simulation of isotropic turbulence has revealed that the vorticity 
field is highly organized and that regions of intense vorticity are concentrated in 
vortex tubes (see e.g. Siggia 1981). This subject has recently received renewed 
interest, and the dynamics of these worm-like structures has been examined in 
detail through very high resolution DNS (see e.g. Jimenez et a1 1993, Vincent 
& Meneguzzi 1994). The existence of tubular structures in large-eddy sim- 
ulations has been observed by Mttais & Lesieur (1992). In particular, they 
showed that the low-pressure regions are better tracers of the coherent vortices 
than the high vorticity-regions, which are very scattered. Furthermore, they 
found (both in DNS and LES) a clear signature of these highly concentrated 
structures on the pressure probability distribution function (PDF): The latter is 
highly skewed, with an exponential fit in the lows and a Gaussian distribution 
in the highs. Pumir (1994), using DNS data, has recently investigated the in- 
fluence of the Reynolds number on the shape of the pressure PDF. In a swirling 
flow between two counter-rotating disks, Fauve et a1 (1993) and Cadot et a1 
(1995) have measured the pressure fluctuations at the wall and found a PDF 
exhibiting characteristics similar to the numerical observations of MCtais & 
Lesieur (1992). 

The SF model also gives good results for free-shear flows: In the incom- 
pressible, spatially growing wake calculations of Gonze (1993), a Karman 
street, which stretched intense longitudinal vortices was formed (see Figure 3). 
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Figure 3 LES of a spatially developing plane wake: structure-function model. Vorticity modulus 
isosurface o = o; (where w; is the maximum initial spanwise vorticity). 

For the computation of spatial derivatives, high-order difference schemes in the 
longitudinal direction and pseudo-spectral methods in the spanwise and shear 
directions are combined. Compact difference schemes of sixth order have been 
used (Lele 1992), with a precision close to spectral methods. It is this code that 
Lamballais used for the channel quoted above. 

We show later a spatially growing mixing layer computed with the SF model 
using the same code. The SF model can be also applied to separated flows, in 
particular to the backstep flow in a channel (Silveira-Net0 et a1 1993). Here, 
some problems arise owing to insufficient resolution at the upper and lower walls 
and the need for logarithmic wall laws, but the detachment behind the step is 
taken into account by the SF model. Comparisons with the experiments of Eaton 
& Johnston (1980) are fairly good for reattachment length, mean velocities, 
and wall pressure coefficient, and the results are better than Smagorinsky’s 
model predictions at Cs = 0.2. In these large-eddy simulations (at Reynolds 
number Re = 48,000, based upon the step height and the incoming velocity), 
turbulent quantities exceed the experimental results by as much as 30% in 
some regions, especially under the mixing layer. The backward-facing step 
large-eddy simulations of Ghosal et a1 (1993, which use a dynamic localization 
model (see below), seem to give a good agreement with the experimental data of 
Adams et a1 (1984). We must stress, however, that experimental measurements 
in recirculating regions are known to be difficult. 
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Breuer & Rodi (1994) used Smagorinsky’s model with a wall-function ap- 
proach to simulate turbulence in straight and curved ducts. Although secondary 
motions are qualitatively well described (which was not the case for classical 
K - E modeling without adjustment of the constants), the authors point out 
discrepancies with the experimental measurements. 

The SF model gives good results in the case of initially 3D isotropic turbu- 
lence subjected to solid-body rotation (Bartello et a1 1994). Here, the subgrid- 
scale model is crucial in reducing kinetic-energy dissipation, since it takes many 
initial turbulent turnover times for rotation effects to act. Thus, one can show 
how moderate rotation rates (turbulent initial Rossby number Ro = 1) favor 
the formation of cyclonic vortices with axes parallel to the axis of rotation, 
while anticyclonic vortices form at lower Rossby numbers (Ro = 0.1). The 
influence of rotation on two-dimensional organized structures (Taylor-Green 
vortices) imbedded in three-dimensional isotropic turbulence was investigated 
by Cambon et a1 (1994) with the aid of LES using Kraichnan’s eddy viscosity 
described in the previous section: The assymmetric behavior of cyclonic and an- 
ticyclonic eddies noticed by Bartello et al (1994) was confirmed. These studies 
are complementary of the DNS carried out by Mansour et a1 (1992) in this case. 

The SF model was also used to simulate transition in a temporal bound- 
ary layer on an adiabatic flat plate at Mach 4.5 (Ducros et a1 1993). Here, 
compressibility is not taken into account in the subgrid model: The dynamic 
viscosity p is replaced by p + pt, and the conductivity in the energy equation 
C,pPr-’ is replaced by C,(pPr-’  + pyPr;‘). The eddy Prandtl number 
is the same as in the incompressible case, Pr, = 0.6. This is justified if one 
expects that the filtered scales of motion are more affected by compressibility 
than are the subgrid scales. For this high-Mach boundary layer, Ducros et al’s 
LES (which used a four-point formulation of the SF in planes parallel to the 
wall) was done for exactly the same conditions as the DNS of Ng & Erlebacher 
(1992). The initial state is generated in the following manner: One starts with 
a 2D DNS forced by Mack‘s second mode; when this inviscid mode has de- 
veloped into very flattened Kelvin-Helmholtz-like vortices (“rope structures”) 
located approximately on the critical layer, a small 3D perturbation is applied. 
The agreement between the LES and DNS is excellent, but the LES allows 
one to go beyond transition, which was not possible in the DNS. In the early 
stage of transition, a system of waves (Mach waves) is observed; these are 
reflected between the boundary and the sonic line. However, and contrary to 
the confined supersonic boundary layer (see the simulations of Gathmann et a1 
1993), no shock is observed in this region. The eventual state of the Mach 4.5 
temporal boundary layer closely resembles the incompressible boundary-layer 
simulations of Spalart (1988). Spatially growing simulations at Mach 4.5 have 
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been done with the SF model by Normand & Lesieur (1992) at a low resolution 
and by Ducros (1995). Their boundary layers organize into a set of staggered 
hairpin vortices, and the turbulence that eventually develops strongly resembles 
an incompressible boundary layer. This is a sort of justification of Morkovin’s 
(1962) hypothesis. 

As with Smagorinsky ’s model, however, the SF model is too dissipative for 
transition in a boundary layer at low Mach number, and it does not behave well 
in a channel. (This is true even in a four-point formulation in planes parallel to 
the wall, which eliminates the effect of the mean shear at the wall on the eddy 
viscosity.) The spectrum E&) is sensitive to the low-frequency oscillations 
caused by the TS waves. Let us mention, however, that “by-pass transition,” in 
which the upstream perturbation is of high amplitude, may be simulated with 
Smagorinsky’s model (Yang & Voke 1993) and, certainly, with the SF model. 

To overcome the difficulty with transition, two improved versions of the SF 
model have been developed: the selective structure-function model (SSF) and 
the filtered structure-function model (FSF). The dynamic model is another way 
of adapting the eddy viscosity to the local conditions of the flow. We review 
the three types of models in the following sections. 

First, we briefly mention how the SF model may take into account the effect 
of nonuniform (but orthogonal) grids: Let Ac = ( A X ~ A X ~ A X ~ ) ’ / ~  be the 
geometric mean of the meshes in the three spatial directions. One takes into 
account Kolmogorov’s (1941) law, which states that the second-order velocity 
structure function scales like ( ~ r ) ~ / ~ ,  where r is the distance between the points. 
Thus the eddy viscosity (4.4) is interpolated by replacing Ax by Ac, with (in 
the six-point formulation) 

. 3  

where ei is the unit vector in direction xi. Note that Scotti et a1 (1993) proposed 
a generalized Smagorinsky model to properly account for grid anisotropy, using 
energy equilibrium considerations in isotropic turbulence. 

Another question is the relation of Smagorinsky’s and the structure-function 
models when the differences in the structure-function are replaced (within a 
first-order approximation!) by spatial derivatives. For the six-point formulation 
(see Comte 1994), in the limit of Ax + 0, one finds 

VfF M 0.777 ( C ~ A X ) ~ + $ ~ $ ~  + WiWi ,  (4.8) 
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where $ is the vorticity of the filtered field and Cs is Smagorinsky’s constant 
defined by (2.1) and evaluated with (2.2) for a Kolmogorov cascade. This shows 
that in stagnation regions between large vortices, where vorticity is (initially) 
much smaller than strain rate, the structure-function model is about 20% less 
dissipative than Smagorinsky’s model. This situation will favor the longitudinal 
stretching of hairpin vortices. On the other hand, the structure-function model 
might be more dissipative than Smagorinsky’s in the core of the vortices, where 
vorticity is larger than strain. 

5 .  SELECTIVE STRUCTURE-FUNCTION MODEL 
The selective structure-function model was developed in Grenoble by David 
(1993). The idea is to switch off the eddy viscosity when the flow is not three 
dimensional enough. The three-dimensionalization criterion is the following: 
One measures the angle between the vorticity at a given grid point and the 
average vorticity at the six closest neighboring points (or the four closest points 
in the four-point formulation). If this angle exceeds 20”, the most probable value 
according to simulations of isotropic turbulence at a resolution of 323-643, 
the eddy viscosity is turned on. Otherwise, only molecular dissipation acts. 
The new constant in Equation (4.4) is determined by analysis of LES data of 
freely decaying isotropic turbulence. It is calculated by requiring the eddy 
viscosity given by the selective structure-function model averaged over the 
entire computational domain to equal the corresponding one obtained with the 
SF model. One finds that the constant in Equation (4.4) has to be multiplied 
by 1.56. 

The SSF model works very well for isotropic turbulence and free-shear flows. 
We show in Figure 4 a comparison between the SF and the SSF models for a 
stably stratified flow above a backward-facing step of height H (taken from 
Fallon 1994). The flow in the incoming channel has a constant velocity UO. 
The Reynolds number is 48,000, and the ratio between the outlet channel height 
and H is 1.25 (a “high step”). A straight temperature step is created in the inlet 
channel. The Richardson number g A p H / ( p U i )  is 0.7, and Navier-Stokes 
equations within the Boussinesq approximation are solved using finite-volume 
methods described in Silveira-Net0 et a1 (1993). Figure 4(a) shows the vorticity 
modulus in the SF simulation, as well as a vertical profile of the temperature: 
Kelvin-Helmholtz vortices are very slow to form, because the vortex sheet 
upstream is very elongated, and no pairing is observed. Figure 4(b) shows the 
SSF simulation: Vortices form immediately downstream of the step and undergo 
several pairings. One can also observe baroclinic formation of smaller vortices 
in the braids, as had been found by Staquet (1991) in DNS of temporal stratified 
mixing layers. As is clear from these calculations, the SSF model treats two- 
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Figure 4 LES of a stratified backward-facing step at upstream Richardson number of 0.7 and 
Re = 48,000 showing the vorticity modulus as well as vertical profiles of temperature [for (a) and 
(b)] and of spanwise vorticity [for (b)].  (a) SF model; (b) SSF model. (Courtesy B Fallon 1994.) 
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Figure 5 SSF simulation of HERMES' rear flap showing the longitudinal vorticity. (Courtesy E 
David 1993.) 

dimensional instabilities better; the model has no influence on them. Therefore, 
the results should be closer to reality than those of the SF model. Thus, the SF 
model is too dissipative for two-dimensional vortices. 

The SSF model was also used by David (1993) to simulate a compression 
ramp at Mach 2.5. These simulations were motivated by studies related to 
the rear flap of the European space-shuttle HERMES during reentry. The SSF 
simulations predicted the existence of longitudinal Gortler-type vortices, shown 
in Figure 5 ,  which are responsible for overheating the flap. 

The SSF model depends, however, upon the most probable angle of the 
nearest neighbors' average vorticity, chosen above to equal 20". In fact, this 
angle is a function of the resolution of the simulation (it should go to zero with 
Ax) ,  and it may also be a function of the type of flow considered. Progress in 
refining this model can be made by adjusting this angle to the local grid. 

6 .  FILTERED STRUCTURE-FUNCTION MODEL 
The filtered structure-function model, developed by Ducros (1995), was applied 
to transition in a spatially developing boundary layer on an adiabatic flat plate at 
Mach 0.5. Here, the filtered field iii is subjected to a high-pass filter to remove 
low-frequency oscillations that affect E,&) in Equation (4.1). The high-pass 
filter is a Laplacian, discretized by second-order centered finite differences 
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and iterated three times. Ducros (1995) showed that, for some 3D random or 
turbulent isotropic test fields, the spectrum of the high-pass filtered field is 

This spectrum is different from the (k4)3 law one should expect from an iterated 
Laplacian; the loss is due to the finite-difference scheme. On the other hand, the 
second-order velocity structure function of the filtered field satisfies an equation 
analogous to (4.3): 

] dk. 
sin(kAx) 

F ~ ( x ,  Ax) = 4 E(k) [ 1 - kAx 

By substituting (6.1) into (6.2) and replacing E ( k )  by a Kolmogorov spectrum, 
it is possible to evaluate p.(x, Ax) in terms of a spectrum E&) that is not 
sensitive to the low-wavenumber fluctuations. We obtain 

urSF(x, AX) = 0.0014 C,”’AX[F~(X,  AX)]''^. (6.3) 

This method works well for both isotropic turbulence and transition in a spatially 
developing boundary layer. This simulation was performed by Ducros (1995) in 
a weakly compressible case at M, = 0.5, for an adiabatic plate. The upstream 
boundary conditions comprised superposing a Blasius velocity profile and TS 
waves with 3D white noise of the same amplitude as the waves. The upstream 
displacement thickness Reynolds number was 1000. The numerical method 
used was the fourth-order MacCormack scheme (see Normand & Lesieur 1992, 
for details). The resolution was 650 x 32 x 20 in the streamwise, transverse, 
and spanwise directions. A top view of the longitudinal vorticity is shown on 
Figure 6. TS waves develop a staggered secondary mode, which then breaks 
down into turbulence. The latter is characterized by hairpin vortices shedding 
“spike vortices” at their tip. Low- and high-speed streaks were also observed 
in the peaks and valleys, respectively, with a spanwise periodicity of about 100 
wall units, as in the experiments of Kline et a1 (1967) and in the channel-flow 
LES (Moin & Kim 1982) and DNS (Kim et a1 1987). 

Figure 6 FSF simulation of a weakly compressible boundary layer on a flat plate. The longitudinal 
vorticity (dark shading) and the pressure (gray) are shown. (Courtesy F Ducros 1995.) 

Annual Reviews
www.annualreviews.org/aronline

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

99
6.

28
:4

5-
82

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
Y

on
se

i U
ni

ve
rs

ity
 o

n 
04

/0
5/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://www.annualreviews.org/aronline


66 LESIEUR & METAIS 

Figure 7 Same simulation as in Figure 6.  Shown is an enlarged view of vortex lines and eddy- 
viscosity contours in the developed region. 

Figure 7 shows an enlarged view of vortex lines and an isosurface of the eddy 
viscosity corresponding to a threshold of 10 v in the developed region. It is clear 
that the eddy viscosity is significant in the tips and the legs of hairpin vortices. 

Figure 8 presents the longitudinal velocity fluctuations in a plane parallel to 
the wall at a distance of y+ = 10.3. This demonstrates the existence of the 
low- and high-speed streaks. 

We stress that although DNS is able to simulate the early stage of transition 
(Kleiser & Zang 1991), the simulation eventually blows up due to insuffi- 
cient resolution. As already stated, the flow remains laminar with the classical 
Smagorinsky or SF models. However, the FSF model is somewhat inadequate 

Figure 8 Same simulation as in Figure 6. Shown is the longitudinal velocity in a horizontal plane 
10.3 wall units from the plate. 
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Figure 9 (a) SF simulation vs (b) FSF simulation of aspatially developing mixing layer. (Courtesy 
J Silvestrini.) 

in predicting average quantities; in particular, it overestimates the mean ve- 
locity in the logarithmic profile by about 15%. The same overestimates occur 
when it is applied to incompressible channel flow (E Lamballais 1995, private 
communication). 

Figure 9 shows a comparison of the SF and the FSF models applied to a 
spatially developing incompressible mixing layer, with a hyperbolic-tangent 
velocity profile plus a weak quasi-two-dimensional random perturbation at 
the inflow. An isosurface of the vorticity modulus is shown; the threshold 
is two-thirds of the basic spanwise vorticity. In both cases, Kelvin-Helmholtz 
vortices are produced, which stretch intense longitudinal hairpins, as in Bernal 
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& Roshko's (1986) experiment. However, the FSF case is more chaotic; its 
upstream vortex sheet is about half as long as its SF counterpart, pairing occurs 
much faster, and there are more longitudinal vortices in the spanwise direction. 

One of the common drawbacks of the differing versions of the SF model is 
the absence of a cusp near kc .  Chollet & Lesieur (1981), through the analysis 
of E.D.Q.N.M. data, proposed an exponential form for the cusp. However, it 
can be correctly approximated by a power law of the type 

with 2n x 3.7. The eddy viscosity given by Equation (6.4) has provided 
encouraging results in the LES of homogeneous turbulence (Dang 1985) and 
in the LES of transitional channel flow (Deschamps & Dang 1987). For these 
simulations, the value of 2(n + 1) = 8 (or 16) was adopted and u:n was adjusted 
by comparison with other computations. When spectral methods are used, 
only high-order Laplacians can be considered. For finite-difference methods, 
however, these are difficult to handle. In Equation (6.4), ut*, can be determined 
by considering the energy balance between explicit and subgrid-scale transfers. 
This yields 

I" 2utk2E(k,  r)dk = E ,  

which, in a Kolmogorov inertial range, leads to 

We recall that uTo = 0.441 CK3" (see Equation 3.3). Actually, the E.D.Q.N.M. 
value of 2n = 3.7 is not so far from the exponent 2n = 3 that would be 
obtained with the second-order finite-differences Laplacian considered in the 
FSF model, iterated twice. Therefore, we propose a physical-space turbulent 
dissipative operator of the following form: 

where Z j j  is the deformation tensor of the field ti and the tilde now stands for 
the FSF bi-Laplacian high-pass filter. u:') and ut(2) can be evaluated using the 
FSF model, which yields: 

(6.8) 

(6.9) 

u;')(x, AX) = 6.81 x 10-3Ci3/2A~ [F~(x, 
u,(')(x, AX) = 0.0416~,( ' ) (~,  AX). 
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The constant A is defined by 

G, (6.10) 
4 3 5 - m  A=-- 

5 m + l  
for m 5 3, where m is the slope of the spectrum E ( k )  at the cutoff; it is set 
equal to zero for m > 3. This constant accounts for the deviation from a 
Kolmogorov spectrum, as in Lamballais’ model described by Equation (3.7). 

which yields m = a -+ 1 - S. For the FSF bi-Laplacian, a = 6 and 
If we let E ( k )  o( k‘k-m, one can easily show that &(r)  0: rm-‘-l - - r-’, 

m. - 4 % - 2  A = - -  
5 8 - S  

(6.11) 

We recall that S characterizes the asymptotic behavior of Fz(r)  in the neigh- 
borhood of Ax. The condition m > 3 (where the eddy viscosity has to be set 
equal to zero) corresponds to 9 < 4. For a Kolmogorov spectrum, S = 16/3. 
This new “spectral-cusp FSF’ model should be tested in boundary-layer flows. 

In the same spirit, one may mention a formulation of the turbulent dissipative 
operator, suggested by JH Ferziger (1995, private communication), that uses 
Smagorinsky’s model as a base model combined with a bi-Laplacian operator 
(n = 1). In this case, the constants are determined using the dynamic procedure 
presented in Section 8. 

7. SCALE-SIMILARITY AND MIXED MODELS 
The eddy-viscosity closures assume a one-to-one correlation between the sub- 
grid-scale stress and the large-scale strain rate tensors. The analysis of fields 
obtained from DNS has, however, displayed very little correlation between the 
two tensors (see e.g. Clark et a1 1979, McMillan & Ferziger 1980). Liu et a1 
(1994) recently confirmed this point in a much higher Reynolds number flow 
using the experimental data taken in the far field of a turbulent round jet. This 
lack of correlation between the two tensors has led Bardina et a1 (1980) to 
propose an alternative subgrid-scale model called the scale-similarity model. 
The model is based upon a double-filtering approach and on the idea that the 
important interactions between the resolved and unresolved scales involve the 
smallest eddies of the former and the largest eddies of the latter. Bardina et a1 
suggest evaluating the subgrid tensor as 

(7.1) 

The analysis of DNS and experimental data (Bardina et a1 1980, Liu et a1 
1994) have shown that the modeled subgrid-scale stress deduced from (7.1) 

T. .  - ;.E. -m I j  - I J I j ’  
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exhibits a good correlation with the real (measured) stress. However, when 
implemented in LES calculations, the model hardly dissipates any energy. It 
is therefore necessary to combine it with an eddy-viscosity type model such as 
Smagorinsky’s model to produce the “mixed” model. Along the lines of the 
Bardina et a1 model, new formulations have been proposed to correct for this 
lack of dissipation. Goutorbe et a1 (1994) and Liu et a1 (1994) have proposed 
models with 

1;:j = C,(B,rij - i i i j ) ,  (7.2) 

where CL is a dimensionless coefficient. The models differ through an operator 
(notated by a tilde) that either corresponds to a spatial average (Goutorbe et a1 
1994) or to a second filter of different width (Liu et al 1994). This concept of 
double filtering can be taken one step further, leading to the dynamic models 
presented in the next section. 

8. DYNAMIC MODELS 
We noted that, for Kraichnan’s eddy viscosity, the parameters defining it could 
be computed from a LES with a cutoff kc, by defining a fictitious cutoff kb = 
kc/2, and explicitly calculating the transfers across k& (Lesieur & Rogallo 
1989). This is the underlying philosophy of the dynamic model of Germano 
et a1 (1991, see also Germano 1992). Their method relies on a LES using a 
“base” subgrid-scale model such as Smagorinsky’s model, with a grid mesh Ax. 
The computed fields 7 are filtered by a “test filter” (notated by a tilde) of larger 
width aAx (for instance a = 2), to yield the field 7. If one applies the double 
filter to the Navier-Stokes equation (with constant density), the subgrid-scale 
tensor of the field that must be modeled is 

Let us now consider the resolved turbulent stress corresponding to the test filter 
applied to the field ii: 

The latter is equivalent to Leonard’s tensor associated with the test filter. Note 
that we use signs opposite to those of Germano et a1 (1991), again, because 
the terms become stresses when multiplied by p.  It follows from these two 
definitions that 
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where is obtained by applying the test filter to (1.5). This is known as 
Germano’s identity. As Germano (1994) noted, the work of KampC de Feriet 
(1957) on the concept of averaging has an interesting h3tory. 

Although Lij can be explicitely evaluated, ?;i and cj have to be modeled. 
If Smagorinsky’s closure is applied, we can write 

where C = Ci and 

Aij = ( A ~ ) ~ l S l S i j .  (8.5) 

zj can also be determined with the aid of Smagorinsky’s eddy viscosity, i.e. 

- 
131 and Si, are the quantities analogous to the quantities 131 and Si, built with 
the doubly filtered field f .  Subtracting (8.4) from (8.5) gives 

The method for obtaining C from (8.8) used by many authors entails removing 
it from the filter operation as if it were constant. This leads to 

1 
Lij - ~ L ~ ~ G i j  = 2CMij ,  (8.9) 

with - 
Mij = Bij - Ai,. (8.10) 

Every term of (8.9) can be explicitly determined from the LES field fi. However, 
(8.9) represents five independent equations for one variable C, which is thus 
overdetermined. 

Two alternatives have been proposed to deal with this undeterminacy. A first 
solution adopted by Germano et a1 (1991) is to contract (8.9) by Si j  to obtain 

(8.1 1) 

In principle, this allows us to “dynamically” determine the “constant” C as 
a function of space and time. In tests using channel flow data from direct 
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numerical simulations, Germano et a1 (1991) have shown, however, that the 
denominator in (8.1 1) could locally vanish or become sufficiently small, thereby 
leading to computational instabilities. Lilly (1992) chose to determine the value 
of C that “best satisfies” the system (8.9) by minimizing the error using a least- 
squares approach, i.e. 

(8.12) 

This technique removes the local undeterminacy attached to the original 
formulation (8.1 l), and this form has become the most widely used (see e.g. 
Piomelli 1993, Sreedhar & Ragab 1994). 

Unfortunately, analysis of DNS data (Lund et a1 1993) and of experimental 
data (Liu et a1 1994) revealed that the C field predicted by the models (8.11) 
or (8.12) varies strongly in space and contains a significant fraction of nega- 
tive values: Its variance may reach values as high as 10 times the square of 
its mean value! Therefore, the removal of the “constant” C from the filter 
operation is not a posteriori justified, and the model exhibits some mathemat- 
ical inconsistencies (see e.g. Ghosal et a1 1995 for a discussion on that point). 
The allowance of negative values of C is an advantage of the model because 
these values represent a sort of backscatter in physical space, which replaces 
the spectral k4 backscatter previously mentioned. However, very large negative 
values of the eddy viscosity is a destabilizing process in a numerical simulation, 
and a nonphysical growth of the resolved scale energy has often been observed 
(Lund et a1 1993). The cure often adopted to avoid excessively large values of 
C consists in averaging the numerators and denominators of (8.11) and (8.12) 
over space and/or time, thereby losing some of the conceptual advantages of 
the “dynamic” local formulation. However, averaging over direction of flow 
homogeneity has been a popular choice, and this has produced good results. 
For example, Germano et a1 (1991) and Piomelli (1993) used an average in 
planes parallel to the walls in their channel flow simulation. They showed 
that the dynamic model gives a zero subgrid-scale stress at the wall, where Lij 
vanishes, which is a great advantage with respect to the original Smagorinsky 
model; it also yields the proper asymptotic behavior near the wall. Compar- 
isons with DNS at R = 3300 (based upon the centerline velocity and the 
channel half-width) and with experiments at high Reynolds number are good, 
and encouraging results are obtained for transition. Notice that, in the channel 
center, Piomelli (1993) obtained CS x 0.06, a value slightly lower than the 
commonly used values in “classical” Smagorinsky’s formulation. Note also 
that the use of Smagorinsky’s model as a base for the dynamic procedure is 
not compulsory, and any of the models described in the present paper can be a 
candidate. As examples, Zang et a1 (1993) and K Shah & JH Ferziger (1995, 
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personal communication; see below) have successfully utilized this procedure 
in the “mixed” model (cf previous section) [see also Goutorbe et a1 (1994), 
Ghosal et a1 (1995), and El-Hady & Zang (1995) for other models]. 

The drawback of the averaging procedure is that it restricts the model appli- 
cability to a simple flow geometry with at least one direction of homogeneity. 
An alternative formulation has been suggested by Meneveau et a1 (1994) in 
which the error associated with Germano’s identity is minimized along par- 
ticle trajectories rather than directions of statistical homogeneity. The model 
is shown to produce results equal or superior to those of spatially averaged 
versions of the dynamic model. However, two additional transport equations 
need to be solved, which somewhat increases the computational cost. In a 
work in progress, K Shah & JH Ferziger (1995, personal communication) use 
the “mixed” model with Smagorinsky’s eddy viscosity as a base model for the 
dynamic procedure. C is obtained through Equation (8.12). However, the two 
tensors Cij and Mi, in (8.12) are not directly evaluated with the LES field 17, but 
with the aid of aprefiltered field h,  where the circumflex designates an additional 
filter of width 1.5Ax; the test-filter width is kept equal to 2Ax. The advantage 
of this extra filtering is to considerably curtail the variance of C ,  and therefore it 
precludes the necessity of spatial averaging. This model has been implemented 
by K Shah & JH Ferziger (1995, personal communication) in a finite-volume nu- 
merical code to simulate the three-dimensional (nonhomogeneous) flow around 
a cube mounted on the bottom wall of a channel at a Reynolds number of 3000 
(based upon the upstream mean velocity and the cube height). The numeri- 
cal results have been compared with the laboratory experiment performed by 
Martinuzzi (1992) at Re = 40,000. Although the numerical and experimental 
Reynolds numbers are very different, a good agreement was found, outside the 
boundary-layer regions, for the mean velocity profiles measured at different 
streamwise locations. Furthermore, and in spite of the flow complexity, the 
temporally averaged streamlines near the bottom boundary layer obtained in 
the LES (Figure 10) exhibit features almost identical to those experimentally 
observed with oil film techniques. The separation distance upstream of the 
obstacle is different in both cases, due to Reynolds number effects. 

The mathematical inconsistency attached with the extraction of C from the 
filtering operation in (8.8), as well as the limitations introduced by the spatial 
average in the direction of flow homogeneity, have recently been addressed by 
Ghosal et a1 (1995). They use a global variational approach to properly account 
for the spatial variation of the coefficient within the filter operation. Two mod- 
els are derived that allow a generalization of the dynamic procedure to flows 
that do not necessarily possess homogeneous directions. The constraint C 2 0 
was imposed in the first model, in order to permit the derivation of an integral 
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equation for C. This model is referred to as the constrained dynamic localiza- 
tion model. However, this constraint forbids possible backscatter, which has 
motivated the development of a second model enforcing a budget for the inverse 
energy transfer through the inclusion of a transport equation for the subgrid- 
scale kinetic energy. This model is called the k-equation dynamic localization 
model. Note that the use of additional transport equations in LES was previ- 
ously adopted by several authors (see e.g. Deardorff 1973, Schumann 1975, 
and Grotzbach & Schumann 1979). Ghosal et a1 (1995) have tested their mod- 
els in forced isotropic turbulence and in the flow over a backward-facing step. 
Figure 11 shows the prediction of Kolmogorov’s k-5/3 and the Kolmogorov 
compensated spectra in forced isotropic turbulence obtained from the dynamic 

6.00 

5.00 

4.00 

3.00 

2.00 

1.00 

1 .00 2.00 3.M) 4.00 5.00 6.00 7.00 

Figure 10 LES of three-dimensional flow around a cube mounted on the bottom wall of a channel 
at a Reynolds number of 3000 (dynamic mixed model). Shown are temporally averaged streamlines 
near the bottom boundary layer. [Courtesy K Shah & JH Ferziger (1995, private communication).] 
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Figure I I LES of forced isotropic turbulence showing the compensated kinetic-energy spectrum: 
(solid line) k-equation dynamic localization model, (dashed line) constrained dynamic localization 
model, (dotted-dashed line) dynamic model. (From Ghosal et al 1995.) 

model and the two-models just discussed. The best plateau is displayed by 
the k-equation model. Note that the “quality” of the inertial range obtained 
is similar to the one provided by the previously described structure-function 
model (see Section 4 and Figure 2). The formulation proposed by Ghosal et a1 
(1995) partially removes some of the inherent inconsistencies in the dynamic 
procedure, but only at the additional expense of two more integral equations 
and one transport equation. Furthermore, new constraints have to be introduced 
in the transport equation. Therefore, schemes based upon spatial averages are 
still the most widely used because they are relatively easy to implement. 

9. NUMERICAL DIFFUSION 
So far, the subgrid-scale models discussed explicitly introduce physical as- 
sumptions to account for the effects of the unresolved scales on the resolved 
ones. Some numerical schemes are also available that present sufficient nu- 
merical diffusion or damping to mimic these effects. For example, the third- 
order upwind finite-difference schemes introduced by Kawamura & Kuwahara 
(1984) were applied with some success to the simulation of high Reynolds 
number flows without recourse to any subgrid-scale model. We call these 
simulations “pseudo-direct simulations.” It should be stressed that similar 
simulations performed by Silveira-Net0 et a1 (1993) for the backward-facing 
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step have displayed very bad agreement with the experiments. Boris et al(l992) 
showed that the Piecewise Parabolic Method (PPM) also has intrinsically the 
features of a dissipative subgrid-scale model. Porter et a1 (1994) used this nu- 
merical method to simulate a 3D, decaying supersonic turbulent flow at high 
Reynolds number. The development of a k-5/3 kinetic-energy spectrum was 
observed at large scales for the solenoidal part of the velocity field, and a new 
spectral behavior of shallower slope ( Z k - ' )  was found in the smaller scales. 
Note that when using these techniques one has to make sure that the numerical 
diffusion exactly meets the requirements of the subgrid-scales, and the results 
obtained with such numerical methods have to be checked very carefully. 

10. CONCLUSIONS 
In this paper, we have tried to present the main recent trends of large-eddy sim- 
ulation techniques. Large-eddy simulations allow us to focus attention on the 
large scales while the scales unresolved by the grid mesh are modeled with some 
generalized eddy viscosity. When a passive scalar is convected by the flow, one 
also introduces an eddy diffusivity. The latter is generally taken to be propor- 
tional to the eddy viscosity through the assumption of a constant Prandtl number. 

The most popular model for engineering application purposes when small- 
scale turbulence is three dimensional is certainly Smagorinsky 's model (1963), 
where the eddy viscosity is proportional to the square of the grid mesh Ax times 
the local strain rate. The constant arising in the model may be determined if one 
assumes that subgrid-scale turbulence is isotropic and follows a Kolmogorov 
k-'I3 inertial range, but this adjustment is questionable in transient situations 
or in the proximity of boundaries. This provides the motivation for dynamic 
models, where an attempt is made to evaluate the constant dynamically through 
a double filtering. Standard Smagorinsky's model gives interesting results (as 
far as coherent structures are concerned, for instance) in isotropic turbulence 
and in free-shear flows, but fails in the presence of a boundary, where the eddy 
viscosity due to the mean strain is too high to allow for the growth of viscous 
instabilities. 

Another class of subgrid models may be introduced if one works in Fourier 
space. Kraichnan's (1976) spectral eddy viscosity, which expresses the action 
of modes > k c  = rr/Ax upon the subgrid-modes k 5 k c ,  is proportional to 
[ E ( k ~ ) / k c ] ' / ~ ,  where E ( k c )  is the kinetic-energy spectrum at the cutoff. It 
is independant of k except in the neighborhood of k c ,  where it rises sharply 
in a cusp. From an energetic point of view, it takes into account all the in- 
teractions across k c ,  including the backscatter. This model gives very good 
results for mixing layers; in particular, it provides information about possible 
longitudinal stretching or dislocations of the vortex field according to the types 
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of perturbations forcing the flow. It also aptly describes the decay of three- 
dimensional isotropic turbulence at infinite Reynolds number for flows with an 
initial spectrum sharply peaking at kl . In a preliminary stage, kinetic energy 
cascades up to kc, while being conserved. Afterwards, the spectrum decays 
self-similarly with a k-2 slope close to the cutoff. Meanwhile, a k4 backscatter 
is produced for k c k l .  A finite-time singularity for the enstrophy is thus 
obtained, if the latter is determined by extrapolation of the cutoff spectrum at 
the subgrid scales. 

The structure-function model (MCtais & Lesieur 1992) is designed to mimic 
the action of spectral eddy viscosity (without a cusp) in physical space. A local 
kinetic-energy spectrum at the cutoff is introduced, which is determined in terms 
of the local second-order velocity structure function. The latter is evaluated by a 
local averaging on the six (in a volume) or four (in a plane) closest points on the 
grid. The SF model yields a good Kolmogorov energy spectrum for isotropic 
turbulence (better than Smagorinsky’s, which has a steeper spectrum), as well 
as hints of Batchelor’s k-7/3 quasi-normal law for the pressure spectrum, with 
the right constant. The SF model also preserves the pressure large-scale inter- 
mittency, with a pressure PDF that is exponential in the lows and Gaussian in 
the highs. The SF model has been applied satisfactorily to wakes (temporal and 
spatial) and to a backstep flow, where it improves upon Smagorinsky’s results. 
We have also discussed, in the limit of a vanishing mesh, the relationships 
between both models. In the four-point formulation (averages carried out in 
planes parallel to the wall), the SF model allows one to continue past the tran- 
sition of the second mode in a temporal boundary layer on an adiabatic plate at 
Mach 4.5. However, at low Mach number, the SF model is still too dissipative. 

We also described a selective version of the SF model, where the eddy viscos- 
ity is weighted in such a way that it is active only in regions of space where the 
flow presents a certain degree of three dimensionality. The 3D criterion consists 
of looking at the relative orientation of the vorticity vector and the average of 
the vorticity vectors of the closest points, by comparison with the most probable 
values obtained in DNS of isotropic turbulence. This SSF model was shown 
to behave very well in a stably stratified backstep flow, where stratification is a 
strong two-dimensionalization factor, and in a supersonic compression ramp at 
Mach 2.5, where longitudinal Gortler-type vortices are produced that severely 
affect the heating at the boundary. Another way of improving the performance 
of the SF model, for transition on a flat plate, is to apply a high-pass filter to 
the flow and to compute the local spectrum E(kc)  in terms of the filtered field 
structure-function. This allows the eddy viscosity to rid the flow of large-scale 
fluctuations and shears. Such a filtered structure-function model (FSF) allows 
one to simulate at a not-too-excessive cost the whole transition to turbulence 
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in a weakly compressible, spatially growing boundary layer. The model is also 
very efficient for incompressible spatial mixing layers. 

In scale-similarity models (Bardina et a1 1980), the subgrid-scale stresses 
are evaluated by a further filtering on a larger mesh of the field ii, as if the 
latter was the actual field u. More recently, Germano et a1 (1991) introduced 
the dynamic model, where a double filtering allows one to recompute Cg, 
the constant arising in Smagorinsky’s model, as a function of space and time. 
Since the latter is determined with the aid of a tensorial equation, problems arise 
due to either local undeterminacies (in Germano et al’s 1991 formulation) or to 
excessive backscatter (C: < 0) in Lilly’s (1992) formulation; these lead rapidly 
to a divergence of the simulation. This is the reason one must average Cg in 
directions of homogeneity. Although this averaging is somewhat inconsistent 
with the original dynamic modeling philosophy, it gives good results for channel 
flows (where averages are performed in planes parallel to the boundaries) or for 
backstep flows (with an averaging in the spanwise direction). More recently, 
new dynamic models have been developed by Ghosal et a1 (1995), where either 
backscatter in physical space is forbidden or controlled by an evolution equation 
following ii of the subgrid kinetic energy. 

We discussed other models that take into account the cusp arising in Kraich- 
nan’s spectral eddy viscosity, through iterated Laplacians. Finally, we also 
briefly discussed pseudo-direct simulations in which numerical diffusion is 
supposed to take care of subgrid transfers. 

Large-eddy simulations are undergoing a blooming development, based both 
on the new subgrid modeling methods presented in this paper and on the 
tremendous progress in scientific computing. Confined in the past to very sim- 
ple configurations such as isotropic turbulence or periodic flows, geometries are 
progressively evolving to spatially growing shear or separated flows, pipe flows, 
riblet-mounted channels, etc. In these cases, LES, allied with DNS, are now 
able to provide both deterministic (in terms of coherent-vortex dynamics for 
instance) and statistical predictions. This stage is very important, particularly 
for assessing and possibly improving the one-point closure models. There is no 
doubt that the complexity of problems tackled by LES techniques is going to 
increase, and this will have a decisive impact on industrial modeling and control. 
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