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Abstract. In tropical cyclone (TC) risk assessment, many of previous studies have attempted to construct the statistical 

relationship of TC damage and three risk elements–exposure, vulnerability, and hazard. For hazard parameters, central 

minimum pressure, maximum wind speed, and size have been widely utilized while the track was not mainly considered as 

one of critical hazard parameters. This study shows that, in a decision tree analysis for TCs that made landfall in South 

Korea during 1979-2010, track is the primary factor to predict damage occurrence. Small track deviations £ 250 km could 10 

distinctively change the damage maps for South Korea. This significant track-dependency of TC risk exists because TC track 

is responsible for the realization of the other hazards developing from a potential to an active hazard, such as wind gusts or 

downpours at a given settlement. TC track determines the overall severity and spatial distribution of the active hazards by 

changing the combination of multiple factors: physical geography experience, duration of influence, and relative position of 

dangerous semicircle side of the TC. These results indicate that large uncertainty in future track projection may seriously 15 

mislead future TC risk modeling because trivial track projection error alone can produce severe errors in damage projection 

even when TC frequency and intensity value is precise and accurate. 

1 Introduction 

Tropical cyclones (TCs) are among the biggest concerns for disaster management since TC is the most costly natural disaster 

as a single natural hazard worldwide (http://emdat.be). Many researchers have tried to understand and predict TC activity 20 

and associated risk. In TC risk studies, the risk triangle concept, which describes risk as comprising three major elements 

(i.e., hazard, exposure, and vulnerability), is widely adopted (e.g., Mendelsohn et al. 2012; Peduzzi et al. 2012). To estimate 

the risk quantitatively, actual damage is used as a response variable in an empirical statistical model (Pielke et al. 2008; Park 

et al. 2015), although damage is more likely a materialization of risk in the strictest sense (Cardona et al. 2012). The three 

risk elements are often used as explanatory variables. Exposure and vulnerability are usually expressed by the number of 25 

residents and regional gross domestic product (GDP) in the area of interest, respectively (Pielke et al. 2008). Hazard is 

typically represented by a TC-based hazard parameter, such as central pressure, maximum wind speed, and TC size (e.g., 

Nordhaus 2010; Hsiang and Narita 2012; Czajkowski and Done 2014; Zhai and Jiang 2014). 

Using TC-based hazard parameters, however, is insufficient for estimating TC damage for the following reason. TC-based 

hazard parameters represent the amount of the potential hazards rather than the active hazards because they just indicate only 30 
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one representative intensity value for a TC. Several different modes of hazards are recognized. Most hazards are ‘dormant’ 

or ‘potential,’ simply posing a level of threat to life, property, and/or environment, but once a hazard turns ‘active,’ it 

becomes an incident/emergency (MaCollum 2011). With this classification, TC-based hazard parameters, which indicate the 

intensity of a TC regardless of the possibility of actual impact occurrence, are labeled as ‘dormant’ or ‘potential’ mode if the 

TC is in a position of approaching a settlement. Meanwhile, ‘active’ hazards that are driven by a TC can be listed as rainfall, 5 

wind gusts, wind waves, and storm surges, all of which are localized and directly affect residents. Following their definitions, 

active hazards should be more closely correlated with damage than potential hazards. 

In fact, the realization of potential hazards of a TC into active hazards seems to be largely dependent on the TC track. In 

other words, track has a key role in determining 1) whether the potential hazard of a TC will become ‘activated’ for a given 

settlement and 2) in how intense the active hazard would be. Record-breaking rainfall in Gangneung city, South Korea was 10 

recorded, because the track of Typhoon RUSA (2002) was optimal to strengthen the orographic effect on precipitation over 

the region (Park and Lee 2007). Also, the deadliest damage by typhoon Haiyan in the Philippines in 2013 was mainly 

because the TC penetrated Tacloban city, which is located in a low-lying area near the ocean, such that most of the damage 

arose from storm surge (Ching et al. 2015). In both cases, if the TCs went through a different area, avoiding the mountains 

and lowland, the result could have been much less devastating. 15 

The present study focuses on the importance of track in the TC risk determination process, and purposes to show the role of 

track to mediate the TC hazards by systematically and directly comparing risk patterns of TC landfall cases in South Korea 

during 1979-2010. In a sense, the importance of track in TC risk assessment is well-acknowledged by many previous studies 

on TC risk, so that they used track information as the fundamental basis of their risk assessments. For example, Lin and 

Emanuel (2016) and Hall and Sobel (2013) could evaluate risk of very rare and extreme TCs in specific regions, whose 20 

return periods are much longer than the historical records, based on their models generating numerous synthetic tracks using 

Monte Carlo simulation. The present study, however, tries to directly compare the priority among the risk elements by 

various statistical analysis of the historical TC records and damage data from South Korea, and explicitly shows the 

significant track-dependency in TC risk. Moreover, we explain the role of track in the TC risk triangle framework and how 

TCs having similar intensity and size, but with slightly different track pattern could bring drastically different risk patterns in 25 

South Korea.  

2 Materials and Method 

2.1 Data source and Processing  

The present study utilized several data sets: 1) TC information, 2) national survey data of TC damage, 3) national survey 

data of regional wealth, and 4) surface wind, precipitation observations.  30 

First, TC information including track, intensity, and size were obtained from the Regional Specialized Meteorological Center 

(RSMC) best-track data. For intensity, we used the maximum wind speed and central pressure data. For TC size, we used the 
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longest radius of 30 knot winds or greater storm radius data. The 6-hour interval of RSMC was interpolated to a 1-hour 

interval to obtain precise hazard values at landfall (Park et al. 2011). 
Second, damage data were collected from the National Disaster Information Center (NDIC) of the Korean government 

(http://www.safekorea.go.kr) dataset and used after follwing procedures. NDIC property loss data consists of monetary 

damages to industrial, public, and private facilities, standardized to the value of money in 2005 and taking inflation into 5 

account. The loss data were collected by local governmental offices so that most losses can be collected regardless of 

whether they were insured and uninsured. There may, however, be some light losses not reported to the local offices by the 

victims. The raw dataset was including loss data caused by all types of extreme weather such as TCs, heavy rainfall, heavy 

snowfall, or high waves. Some cases were not classified into specific damage sources, and some cases were stated as high 

wave damage, when in fact the damage was due to a TC. Therefore, we matched the loss data to each TC affecting Korea, 10 

comparing the period of damage in the NDIC dataset with the influence period in the National Typhoon Center (NTC) White 

Book (NTC 2011) and the period a TC remained within 3° of the Korean coastline. If any day of NDIC damage period 

overlapped with the RSMC or White Book influence period of a TC, the loss was attributed to the TC. Then, to confine the 

origin of the loss data to one TC, we excluded cases whose damage period exceed five days from landfall, as NDIC usually 

aggregates the damage amounts and periods for multiple successive extreme phenomena. “Undamaged” and “Damaged” 15 

cases were later categorized based on if there exist any economic loss records reported by NDIC for the given province for 

the given TC event. 

Third, Province-level aggregated wealth data were obtained from government statistical surveys (Korean Statistical 

Information Service, http://kosis.kr/). We aggregated the 17 current districts of South Korea into five provinces, because the 

administrative division had been changed during 1979–2010, and the size of 17 districts varies from city-size to province-20 

size. The names of the provinces are Gyeong-gi (GG), Chung-cheong (CC), Jolla (JL), Gang-won (GW) and Gyeong-sang 

(GS) (See Fig. 1 for the distribution of the provinces). These five provinces have independent records of damage for every 

influential TC case and annual regional wealth. The temporal variation of wealth was considered through normalization of 

damage data to the reference year of 2005 with wealth per capita (4). In general, the wealth of South Korea has consistently 

increased. However, there are significant differences in the growth rates of among provinces (4), which affect the TC 25 

damage records of provinces. By normalization, the possible impact of regional differences in wealth trends was eliminated. 

The spatial disparity of wealth at a certain time, i.e., 2005, should be addressed when mapping the damage distribution. 

Finally, from 60 weather stations throughout South Korea, near-surface wind speed and precipitation intensity were gathered. 

The influence duration of each station was also calculated by counting the number of days whose daily accumulated 

precipitation or daily maximum sustained wind speed exceeded the station’s critical thresholds, which we set as the 90th 30 

percentile of each station. Here, the range of duration was limited by the summation of three relevant periods; 1) the period 

of warning indicated by NTC White Book (NTC 2011), 2) the number of days that TC stayed within 3° of the Korean 

coastline based on the RSMC dataset, and 3) the period of damage in the NDIC dataset (See Supplementary Table 3 for the 

list of the names and years of all the target TCs). 
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2.2 Selection of TC  

In the present study, the TCs that influenced South Korea were defined and distinguished. For national influential TC 

selection, it is common to use a certain criterion based on the distance between a TC center and a certain point on the 

coastline of interest. For example, influential TCs can be defined as TCs whose center was within 300 km of meteorological 

offices or coastlines of the given country (e.g., Park et al. 2011; Park et al. 2016). However, sizable TCs can influence farther 5 

than the defined criterion (e.g., 300 km), and vice versa. Relatively small TCs also can incur damages over areas larger than 

their size through storm surges and wind waves. Therefore, we found that using a fixed distance criterion for selecting TCs 

influential to a society was not the best approach. 

The Korea Meteorological Agency (KMA) has considered a TC as affecting Korea when the center of the TC is located in 

the domain of 32°N–40°N and 120°E–138°E with a high probability of the occurrence of damages to the country. The term 10 

‘probability of occurrence of damages’ depends on a weatherman’s subjective judgment at the time of forecasting. However, 

weathermen consider all the available observations at that time in making a decision, and this makes the influential TC list 

by the KMA more comprehensive. Hence, in this study, as in our previous study (Park et al. 2016), the influential TCs are 

selected by incorporating two complementary references: 1) the objective, strict definition - TCs entering the area within 3° 

of the coast of Korea and 2) the subjective, comprehensive decision of KMA weathermen - the official influential TC record 15 

in the Typhoon White book issued by the NTC (2011). We chose only the TCs that had maximum wind speeds greater than 

or equal to 17 m s–1 (above or equal to Tropical Storm (TS) class) at the time of entering the 3° line. For the TCs that are 

from NTC White Book list and did not approach the 3° delineation, we checked whether their intensity was above TS or not 

given their maximum wind speeds at the time of their closest approach to the Korean coastline. 

In total, 85 TCs were determined to be influential in South Korea from 1979 to 2010. The 85 influential TCs are then 20 

grouped according to their track patterns using the fuzzy c-means clustering method (FCM). The FCM is widely used for 

classifying widespread data with amorphous boundaries. Some previous studies have shown this method to be effective for 

grouping TC track patterns (e.g., Kim et al. 2011). 

2.3 Statistical Analysis  

2.3.1 Data mining methods 25 

We clustered the track patterns, not for the whole tracks from genesis to disappearance, but for the part of the tracks in the 

domain of 28°N–40°N and 120°E–138°E (grey boxes in Fig. 1) so that we could divide tracks focusing on the paths near 

South Korea, whose national TC risk distribution was examined with respect to these clustered track patterns. The TCs were 

grouped into four types. The optimum cluster number were decided by five validity measures - partition coefficient, partition 

index, separation index, Xie and Beni index, and Dunn index (Kim et al. 2011), and four appeared to be the optimum number 30 

in our case. All of the five indexes still pointed to four as the optimum number of clusters even made slight changes to TC 

lists, such as different time frame (e.g., 1979–2015) or different clustering domain (e.g., 5° area from the Korean Peninsula 
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coastline). We checked the temporal trend and monthly distribution of the number of TCs, and they did not show any 

significant trend or discernable differences among the clusters. 

We further introduced the decision tree analysis to decompose the relationships among risk elements. The decision tree 

method, a multi-variable technique, allowed us to explain, describe, classify, or predict a target as a result of the combined 

effects of multiple input variables beyond a one-cause and one-effect relationship. Compared to other multi-variable 5 

techniques, the decision tree method has its own advantage in that it is easy to use, robust with a variety of data, and most of 

all, intuitively interpretable. It helps decision analysts to structure the decision process in a graphical sequence.  

Among several famous decision tree algorithms, this study applied See5/C5.0 as a classification method for TC risk 

materialization. The See5/C5.0 algorithm is an improved version of C4.5 (Quinlan 1993) in terms of accuracy, speed, and 

computer memory consumption. Also, C4.5 algorithm is advantageous because it can accommodate all of the class, binary, 10 

and continuous variable types that we needed (see Supplementary Table 1). See5/C5.0 calculates the information gain at 

each node based on the entropy concept in order to choose the most efficient attribute for splitting the training samples into 

two branches. 

To prevent over-fitting, we introduced pruning and cross-validation. First, we required that branches have a sample size of at 

least five. The number five was determined through retrospective pruning process. Second, a ten-fold cross-validation was 15 

conducted, and we checked that the decision tree results (e.g., model accuracy, tree size, or attribute usage) were stable and 

consistent given the ten dif ferent cross-validation sets. 

2.3.2 Significance tests 

For all the statistical analysis of risk comparison among track groups, nonparametric methods were used (Sawilowsky 1990). 

Medians were used rather than means, and rank-based procedures were conducted for any significance test. This is because 20 

we cannot regard the TC damage as following the normal distribution; rather, damage shows an extreme distribution. Thirty 

percent of TCs have zero losses recorded, and 30% of all the accumulated damages are attributed to a single TC, typhoon 

Rusa in 2012. The Kruskal-Wallis test, or the one-way Analysis of variance (ANOVA) on ranks, was used to determine if 

there are statistically significant differences for a variable between track-groups. Spearman’s rank correlation coefficient, 

which measures the linear relationships between the rankings of two variables, was used instead of the most commonly used 25 

Pearson product-moment correlation coefficient, which measures linear relationships between the raw values of two 

variables. 

3 Results 

In order to objectively evaluate the effect of each TC track on damage, a total of 85 TCs that influenced South Korea during 

1979–2010 were grouped into four track patterns. The four TC track patterns can be characterized as 1) east-short, 2) east-30 

long, 3) west-long, and 4) west-short types based on the position and length of the TC tracks around the Korean Peninsula 
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(Fig. 1). Although zonal distances between east-types (i.e., east-short and east-long) and west-types (i.e., west-short and 

west-long) are only about 250 km, the estimated hazards (both TC-based and active) and damages caused by the TCs are 

significantly different depending on the four TC track patterns at the 99% confidence level based on the Kruskal-Wallis test 

(Fig. 2). This is striking because the short distance around 250 km is somewhat trivial considering that average track errors 

in the northwest Pacific, as determined by many frequently used dynamic or statistical-dynamical techniques, are about 200 5 

and 400 km for 24 and 48 h, respectively (Roy and Kovordanyi 2012). 

As expected, TC-based hazards display different results from active hazards. Although TC-based hazard parameters have 

been commonly used as the sole indicators in TC risk analysis (e.g., Nordhaus 2010; Hsiang and Narita 2012; Czajkowski 

and Done 2014; Zhai and Jiang 2014), it shows poor accordance with damage, especially when compared to active hazard 

(Fig. 2). TCs with longer tracks (i.e., east-long and west-long) show greater TC-based hazards, such as deeper central 10 

pressure, higher maximum wind speed, and larger size (Figs. 2A - C). The TC-based hazard ranking is as follows: east-long, 

west-long, west-short, and east-short track patterns. A TC with a stronger intensity should be more durable and able to 

maintain its system compared to weaker TCs under the same conditions of friction, shear, and/or energy source. In this sense, 

the longer tracks generally have higher wind speeds and deeper central pressures (e.g., Kim et al. 2011). In our analysis, 

more intense TCs appear to have a larger storm radius, but TC size is not necessarily correlated with intensity (Weatherford 15 

and Gray 1988; Knaff et al. 2014). High correlation (correlation coefficient r = 0.58) between size and intensity may be one 

of the characteristics of TCs that have affected Korea. On the other hand, for active hazards, west-types generally have 

higher values than east-types (Figs. 2D - F). For accumulated precipitation and influence duration, and damage, the ranking 

is in order of west-short, west-long, east-long, and east-short track patterns. For near-surface wind, the ranking is in order of 

west-long, west-short, east-long, and east-short. The damage ranking is in order of west-short, west-long, east-long, and east-20 

short track patterns, which is exactly the same as the ranking for accumulated precipitation and influence duration. In 

addition, all of the active hazard parameters considered here show much higher correlations with damages than TC-based 

potential hazard parameters, even if most of TC-based hazards display statistical significance at the 95% or 99% confidence 

(Table 1). The average of absolute correlation coefficient (| r |) for all active hazards and for all track patterns is 0.62, while 

that of potential hazards is just 0.29. Among the active hazards, higher correlation coefficients for accumulated precipitation 25 

and affected duration compared to near-surface wind imply that rainfall can better account for damage than wind in the study 

area, as suggested by some previous studies (Lin et al. 2002; Park et al. 2016). 

The discrepancy of the rankings between TC-based hazards and active hazards can be explained in terms of TC tracks. By 

examining the spatial distribution of local active hazards with respect to topography for the four track patterns (Fig. 3), we 

find evidence that there is a close relationship between track patterns and active hazards. We can see that track pattern 30 

determines the affected location; west-types have higher active hazards in western areas compared to the east-types (Fig. 3). 

Furthermore, as seen in Fig. 2, comparable near-surface wind speed in west-types and east-long tracks is found over the 

entire country, particularly along the coast (Figs. 3A - D) despite the fact that TC-based hazards of west-types are weaker 

than those of east-long (Figs. 2A - F). This is attributed to the fact that west-types cause the Korean Peninsula to fall into a 
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dangerous semicircle (right-hand side of TC center), in which the TC translation speed and rotational wind field are additive, 

whereas east-types place the country in a navigable semicircle (left-hand side semicircle). Furthermore, near-surface wind 

induced by east-types generally does not get to the two mountains of Sobaek and Taebaek (see Fig. 1C) owing to the long 

distance between the storm center and the mountains. Much heavier precipitation is found in west-types compared to east-

types, particularly along the eastern side of the mountainous area (Figs. 3E - H). This is attributed to longer influence 5 

duration and orographic forcing (Figs. 3E - L). West-types may have longer influence duration compared to east-types since 

most TCs move from west to east in the mid-latitudes (see Fig. 1). For the same reason, accumulated precipitation 

throughout the influence duration can be also higher for the west-types than the east-types. Actually, the spatial patterns of 

influence duration and precipitation are almost coincident. One more possible cause of heavy precipitation in west-types is 

the orographic impact of southern and eastern mountains on precipitation (i.e., the Sobaek and the Taebaek mountains). 10 

When a TC is located in southwest South Korea, the east sides of the mountains become the upstream slope of the tangential 

wind of the TC such that precipitation induced by the TC can be even more than the inherent rainband of the TC (e.g., Park 

and Lee 2007; Lin et al. 2002). Thus, the orographic impact can be maximized by west-types but not by the east-types. The 

precipitation impact of the west-short group is even larger than the west-long group, and this point can be partly explained 

by the translational speed of a TC. The west-short type is the slowest among the four track groups (significant at the 95% 15 

confidence level, Kruskal-Wallis test), and thus it can stay the longest over the country, as shown in Fig. 3L. Moreover, it is 

possible that the west-short has the largest interaction time with the mountains. All of the above results suggest that track 

effectively bridges the gap between a TC in potential state and the active hazards. 

In addition to the ranking, the map of economic loss (Fig. 4) also matches that of the active hazards well (compare Fig. 3 and 

Fig. 4). Southern parts, where TCs hit most frequently and both precipitation and wind speed were high, are the riskiest 20 

regions among all the groups. However, as Fig. 4 shows, for west-types, southwestern provinces (Jeonla, JL) records less 

economic losses than southeastern provinces (Gyeongsang, GS) despite the fact that more hazardous wind and rainfall were 

recorded in JL than GS (Fig. 3). This discordance is partly explained by an exposure disparity. GS possesses higher wealth 

compared to JL. After the damage is divided by regional wealth, the regional risk distribution becomes more analogous to 

the hazard distribution (as seen in parentheses in Fig. 4), although the damage in GS is still slightly higher than in JL for the 25 

west-short tracks (Fig. 4D). The unexplained parts of hazard-risk discordance may be related to regional vulnerability to 

TCs. More mountainous area in GS might be a possible reason that the vulnerability of GS is higher than that of JL. These 

results demonstrate that exposure/vulnerability factors are still important in TC risk analysis in addition to track and hazard. 

In this regard, we conducted a decision tree analysis considering all three risk elements plus track to determine which 

element is the primary factor for assessing TC risk. 30 

Through the decision tree analysis, the following three questions could be answered: 1) what is the most effective factor for 

classifying damaged and undamaged TC cases, 2) how do different factors in combination determine damage occurrence, 

and 3) what are the critical values of the factors that can be used as quantitative guidelines related to TC damage occurrence. 

Here, the decision tree model was designed to objectively classify whether a TC will bring damage to a province or not; the 
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decision tree uses best-track data based on TC information (maximum wind speed, minimum central pressure, size, and track) 

as input variables (see Supplementary Table 1 for more information of input variables). Overall, we have 355 effective cases, 

comprising 160 damaged cases and 195 undamaged cases from five provinces (see Supplementary Table 2 for detailed 

information of damage cases). Once again, undamaged cases refer to the cases that the no economic losses have been 

recorded from the given settlement for the given period under the TC’s influence by the official disaster information center 5 

of Korean government. 

According to the decision tree, track information acts as the primary determinant of TC risk. Information of track pattern is 

nominated as the first split attribute in the best-track based decision tree (see Fig. 5). This means all 355 cases should be 

classified by track group prior to all other decision nodes in order to reach the end nodes (damage occurrence). The detailed 

process is as follows. First, the model simply sends all west-type TCs to the end node of “damaged.” On the other hand, the 10 

model requires east-type TCs to satisfy additional criteria to determine damage occurrence. At the national scale, it is true 

that all west-type TCs have caused damages, and all TCs that did not generate damage in any of the provinces in South 

Korea were from either east-short or east-long (see Supplementary Table 2). However, at the province scale, there were 32 

undamaged cases among the 110 west-type cases. Next, the east-type TC cases are assessed according to province and TC 

intensity (maximum wind speed). For a TC in the east-long group to cause damage, it should be in JL, GS, or GW province. 15 

Additionally, for GW province, the maximum wind speed should be greater than 41.1 m s-1. East-short cases, unlike east-

long cases, are sent to the intensity criterion before the province criterion. East-short TCs with weak intensity (maximum 

wind speed less than 25.7 m s-1) are directly linked to the “undamaged” node. The east-short TCs with satisfactory intensity 

(maximum wind speed greater than 25.7 m s-1) are sent to the province criterion; the critically strong east-short TCs can 

incur damage in the southern provinces (See Fig. 5). 20 

The relative importance of the variables in each decision tree is offered quantitatively in terms of the usage rate by the 

See5/C5.0 algorithm. When an attribute is the most-related variable to the target variable, the attribute should be used most 

frequently for classification by a decision tree model. In our decision tree (Fig. 5), the track group variable is used 100% of 

the cases; then, province and best track maximum wind follow with usage rates of 48% and 37%, respectively. Therefore, we 

can say that for risk determination, TC track, other than the local surface observations, is the most important attribute. TC 25 

intensity information is the third most important attribute. TC size is not utilized by any model as an effective classifier to 

distinguish between damaged and undamaged cases.  

On the other hand, the use of the province variable by the TC best-track based decision tree is mainly related to the relative 

location of the province with respect to the TC center along the track. Southern provinces are generally closer to the TC 

center regardless of the four track types because TCs move from the south (low-latitude) to the north (high-latitude). 30 

However, in addition to the distance from the hazard center, the province variable can be interpreted as showing the 

exposure and/or the vulnerability of the provinces. If we put local hazard parameters into the decision tree model, we find 

that the province information acts as exposure/vulnerability (Supplementary Fig. 1). In the local-hazard based decision tree 

model, only the northwestern provinces are determined to be “damaged” with the same wind and precipitation conditions 
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(wind weaker than 12.2 m s-1 and precipitation greater than 70.3 mm per day). We interpret that exposure to be the highest in 

the northwestern province considering that this region is the wealthiest and most populated area over South Korea. 

4 Summary and Disucssion 

The present study firstly compares and contrasts the amount and spatial distribution of risk elements with respect to TC track 

types for TCs that influenced South Korea over the last three decades. The results show that TC damage is about two times 5 

more correlated with local active hazard compared to potential hazard. Then, track is suggested as the main reason why the 

localized active hazard substantially disagrees with potential hazard. The track is a sequence of TC locations, and location 

differences cause substantial changes to local active hazard distributions in association with 1) dangerous/navigable 

semicircle side differences, 2) interaction with inhomogeneous topography, and 3) duration of influence changes. Second, 

we analyzed the priority structure of the TC risk determination process, including track as an independent factor through 10 

decision tree analysis. When local active hazard information is missing, TC track acts to bridge the information gap between 

the TC system and local risk. TC intensity or size information plays peripheral roles for filling the information gap.  

A flowchart of TC risk materialization is drawn as a concluding remark (See Fig. 6). This framework includes track as a 

separate risk element, and it implies that TC hazard can be activated only through track, in other words, only through the 

“conflicts at the interface between geophysical processes and human societies” (Alexander 2000). Then, the risk triangle is 15 

applied not to the dormant hazard (TC intensity and size) but to active hazard, which is a product of a combination of TC 

characteristics (i.e. dormant hazards) and local geography experiences through track. Note that not only local geography 

experience is dependent on track patterns, but TC characteristics also appeared to differ among track patterns (Figs. 2A - C). 

Therefore, we suggest that the integral TC hazard is highly dependent on track. One may argue that if track is taken into 

account within a risk framework, it overlaps with the concept of exposure. This rebuttal can arise from the fact that both 20 

parameters are linked to the possibility of actual influence by the TC. However, exposure refers to population and wealth at a 

certain fixed point. Track determines active hazards, i.e., how much local wind and rainfall at a fixed point will be caused by 

a TC with a given track. Track, however, cannot change exposure at a given point.  

The small longitudinal track deviations, less than 250 km, could distinctively change the damage maps for South Korea. It 

implies that, even for the national scale (especially for countries having complex terrains like the Korean Peninsula), it is 25 

required to consider this track-dependency in risk realization for a reliable TC risk assessment rather than to formulate a 

statistical relationship between the whole national amount of damage from a TC and the intensity or size of the TC (e.g. 

Nordhaus 2010; Hsiang and Narita 2012). Thus, using the local active hazard parameters (rainfall, wind, and surge) would be 

the best to make the risk equations. When the historical observations of local hazards are not available for the case, one can 

adopt reconstructed active hazard values by simple statistical and dynamic models that, in turn, calculate the active hazard 30 

values from track, local geography and TC information [e.g., R-CLIPER model for rainfall (Cheung et al. 2008); SLOSH 
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model for storm surge (Lin and Emanuel 2016)]. Having this additional step between dormant hazard and active hazard, 

similar to a downscaling for numerical models, would much improve the accuracy of the risk assessment. 

A cautious consideration of track variances is also suggested for the climate change scale future TC damage projection 

studies. Anthropogenic contributions to TC track changes have been reported (Colbert et al. 2013; Park et al. 2014; Kossin et 

al. 2016). Also, it has been shown that interdecadal changes of TC tracks in the western North Pacific are associated with the 5 

westward expansion of the subtropical northwestern Pacific high (Ho et al. 2004). Mendelsohn et al. (2012) estimated future 

TC damage including the track variance in future climate by combining the economic models with the 

statistical/deterministic hurricane model generating synthetic TCs under given future climate environments. Still, this 

method does not model the hazard activation, which differs sensitively depending on the landfall locations and from the TC 

approaching directions to the locations. Thus, we suggest that the uncertainty rising from track changes in future climate 10 

should be considered more in details for TC risk research, as it is shown that a slight change in TC track distribution can 

cause the total amount of damage to be much larger or smaller given the same number and intensity of TCs in a particular 

basin. 

As a final implication, our findings highly support the needs of the impact-based forecast which has been recently promoted 

by WMO (2015). The impact-based forecast is a transition from weather forecast to warning services, on the basis that 15 

warnings should deliver information that is directly related to possible damages. It has been reported that avoidable 

casualties and economic losses have been caused by hurricanes and cyclones because the forecasts had an excessive focus on 

the intensity of the cyclones rather than the local active hazards caused by them (Vinet et al. 2012; Meyer et al. 2014). 

Communication on TC risk should focus more on actual impacts that residents in different areas are likely to experience. In 

accordance, our results point out that local hazards, penetrating into the residents, often fairly disagree with the maximum 20 

intensity of the TC, observed in the small area near the center. Also, the methodology (combining track clustering and 

decision tree model) and the regional threshold values for damage occurrence presented here, could be practically used for 

the impact-based forecasts for TCs over South Korea. 
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Table 1: Each Spearman’s correlation coefficient of property losses with active and TC-based hazards. Active hazards are maximum 
daily wind speed, maximum daily precipitation, and the sum of influenced periods for all 60 weather stations. TC-based, potential hazards 
are maximum wind speed, central pressure, and storm radius (30 knot) based on the RSMC best-track data for each track group. The 
significances of correlations are shown with asterisks. 15 

 

 

Four track groups All 

East-short East-long West-long West-short 

Active hazard parameters (from weather station) 

 Daily max wind speed 0.45** 0.58** 0.66** 0.59** 0.62** 

Daily precipitation 0.37** 0.66** 0.74** 0.80** 0.71** 

Influence duration 0.48** 0.76** 0.59** 0.78** 0.76** 

Potential hazard parameters (from best-track data) 

 Maximum wind speed 0.39** 0.17* 0.27* 0.39** 0.29** 

Central pressure -0.40** -0.16* -0.35** -0.41** -0.27** 

Storm radius 0.39** 0.08 0.16 0.30* 0.24** 

 * Significant at the 95%, ** significant at the 99% confidence levels. 
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Figure 1: Four groups of tropical cyclone tracks that made landfall over South Korea during 1979–2010. Box shaded in grey, 
covering 28N – 40N and 120E – 138E, indicates the clustering domain for the fuzzy c-means clustering method. A map of the five 
aggregated provinces of South Korea is displayed in (C): Gyeong-gi (GG), Chung-cheong (CC), Jolla (JL), Gang-won (GW), and Gyeong-
sang (GS). The Taebaek and Sobaek mountains are drawn with orange lines. 5 
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Figure 2: Boxplots of the hazards and damages of track-pattern groups. (A) Maximum wind speed, (B) central minimum pressure, 
and (C) storm size from RSMC best-track data at the point that the TCs entered the area within 3° of the coast of the Korean Peninsula, or 
for the TCs that did not enter the area within 3°, when they were closest to South Korea. (D) Daily maximum wind speed (10 min average), 
(E) daily accumulated precipitation, (F) influence duration from 60 weather stations, and (G) property losses (1$ ≒ 10³₩) over South 5 
Korea. The storm size is the longest radius of 30 knot winds or greater. Station maximum wind speed and precipitation are one maximum 
daily value in the whole influence duration. The upper (bottom) side of each box is the third (first) quantile. The bar inside the box 
represents the median, and the circle represents the mean. Outliers, which are located outside of the maximum whisker length, are drawn 
as ‘x.’ The maximum whisker length is 1.5 times the value of the third quantile minus the first quantile. The plotted whiskers extend to the 
adjacent value, which is the most extreme data point that is not an outlier. 10 
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Figure 3: Three active hazard parameters – wind, precipitation, and duration, of tropical cyclones for each track-group observed 
at 60 weather stations. 
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Figure 4: Medians of regional economic losses from a tropical cyclone (regional economic losses divided by regional wealth). The 
dark shading indicates provinces having median losses larger than ₩(KRW) one billion, and the light shading indicates provinces having 
median losses larger than ₩ 0.1 billion and smaller than ₩ one billion. More than the half of the east-short TCs are undamaging TCs, so 
the property loss medians of all provinces are zero. 5 
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Figure 5: Decision tree model for damage occurrence using the four TC best-track attributes (maximum wind speed, central 
pressure, storm size, and track-group) and province information as input variables. The number of cases corresponding to each 
criterion is presented along each arrow. The shaded boxes indicate the final diagnosis boxes, in which the precision of the diagnosis is 
written in parentheses (the number of correctly identified cases / the number of cases diagnosed following the specific sequence of criteria). 5 
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Figure 6: Flowchart for local risk materialization process with TC risk elements and their relationship. 


