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Classics in physical geography revisited

Lorenz, E.N. 1963: Deterministic 
nonperiodic fl ow. Journal of the 
Atmospheric Sciences 20, 130–41.1

�

This remarkable paper is a landmark in 
meteorology and weather forecasting, and in 
mathematics. The paper is also noteworthy 
for the clarity of its exposition. In this ap-
praisal I give a brief description of what it 
contains, the signifi cance of the results, and 
an outline of some recent applications of this 
material for the dynamics and forecasting 
of climate. It is fi rst necessary to describe 
some mathematical details, but this is 

intended to be ‘user-friendly’, and grasping 
the main conclusions requires a minimum of 
mathematical background. Details have been 
skipped; if readers want all the mathematical 
details, they should consult the paper and 
other references provided.

The atmosphere may be regarded as a 
forced, dissipative fl uid dynamical system: its 
motion is forced by the latitudinal imbalance 
of solar heating, and dissipated by friction. 
At the time this work was done, laboratory 
experiments (with a rotating annulus of fl uid, 
cooled at the centre and heated at the outer 
boundary) that were designed to be a simple 
model of this system were known to contain 
a variety of types of flow. Some of these 
types were steady, others were periodic, and 
others varied, like the weather, in a manner 
that never seemed to repeat (eg, Hide, 1958). 
The equations that describe such a system 
must be non-linear (in the usual mathematical 
sense that the sum of any two solutions to 
them does not normally constitute a third 
solution). This paper describes the study of 
a simple but non-linear system of equations 
that contains such non-periodic solutions, 
and reveals their nature. This system is not 
derived from a direct analogue of the atmo-
sphere, but its mathematical structure has 
the appropriate properties.

Accordingly, the body of the paper 
contains the description of the numerical 
integration of a set of non-linear equations 
describing thermal convection, originally 
due to Saltzman (1962). Specifically, they 

Figure 1 Ed Lorenz on a recent hiking 
excursion – one of his favourite pastimes 
(photo courtesy of Joel Sloman)
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describe the fl ow of viscous, diffusive fl uid 
between a cooled horizontal upper surface 
and a warmed lower one, and the full system 
has been truncated from a full horizontal 
Fourier series in the spatial structure to 
just one horizontal and one vertical scale of 
convecting cell. This leaves three variables 
(X, Y, Z) that vary with time and describe 
the amplitudes of the velocity (X) and tem-
perature (Y) of the convecting cells, and of the 
horizontally averaged temperature (Z) (see 
Figure 2). Saltzman found that, for certain 
conditions, numerical integrations of the 
more complete equations showed that all 
components except these three variables 
decayed to zero given suffi cient time. In any 
case, these equations themselves are the 
main object of interest, and they are normally 
written as:
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These equations contain three constant 
parameters: σ, a Prandtl number (the ratio 
of diffusivities of momentum and heat), r = 
Ra/Rc, the Rayleigh number Ra

 
scaled with 

its critical value for the onset of convection, 
Rc

 
(a larger Rayleigh number implies larger 

thermal forcing of motion), and b = 4/(1 + a2), 
where a is a horizontal wavenumber for the 
convection cells. The subject of convection of 
a horizontal layer cooled from above has been 
well studied, and will not be pursued further 
here. Instead, following Lorenz, we will focus 
on these equations and their properties.

Equations (1) contain non-linear terms 
due to advection of the heated/cooled 
fl uid by the convecting motion. They have 
the steady-state solution:

 ( , , ) ( , , ),X Y Z = 0 0 0  (2)

which is stable (which here means that solu-
tions for any initial conditions eventually ap-
proach and reach this point) for r in the range 
0 < r < 1, regardless of the values of σ and b. 

In physical terms, this solution means that 
thermal diffusion is able to carry the vertical 
heat transport without requiring any fluid 
motion. In mathematical terms, the attractor 
of the system is the state of zero motion, for 
these conditions. When r > 1, there are two 
additional steady-state solutions:

 ( , ) ( ( )) ( , ), ,X Y b r Z r= ± − = −1 1 1 1
1
2  (3)

which represent steady convecting flow. 
These solutions are stable if:
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implying that they are ‘attractors’ of the 
mathematical system, but not otherwise. 
These two states represent steady circulation 
of fl uid around the convection cell in one dir-
ection or its opposite, as depicted in Figure 2, 
and their stability implies that solutions with 
arbitrary initial conditions approach one or 
the other of these fl ow states. This is about as 
far as one can get with conventional analysis, 
and the study of what happens under other 
conditions must be pursued by numerical inte-
gration. This involves choosing a particular 
set of parameter values, and a particular 
initial condition, and integrating equations (1) 
forward in time.

Following the studies of Saltzman, Lorenz 
chose σ = 10 (a realistic value for water), 
and a2 = ½ so that b = 8/3. Equation (4) 
then gives the criterion for instability of the 
steady circulations to be r > 24.74, and 
Lorenz chose to integrate equations (1) with 
r = 28, and the initial conditions (X, Y, Z) 
= (0, 1, 0). The evolution of the resulting 
solution with time may be described by the 
motion of a point in three-dimensional ‘phase’ 
space of coordinates (X, Y, Z), with time as 
a parameter marking the position along a 
path. The solution represented by the path 
of this point does not converge to a steady 
state, but instead tends toward a shape that 
may be described as resembling a three-
dimensional butterfl y, consisting of a pair of 
thin symmetrically inclined butterfl y wings 
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that intersect at the bottom in the ‘body’ of 
the butterfl y. The projection of this shape 
onto the X–Z plane is shown in Figure 3. 
The two steady-state solutions given by (3) 
lie near the centres of the wings, as shown 
in Figure 3a, but the solution never reaches 
these points. Instead, it cycles one or more 
times around this centre in one wing, until 
it passes into the other wing where it again 
cycles one or more times around the second 
centre, until it passes back to the fi rst wing. 
This process repeats endlessly, but not in 
a repetitive manner. At no stage does the 
solution equal any given previous state, 
though it may become arbitrarily close to it 
arbitrarily often.

In terms of the variable X, the solution 
fluctuates with X negative for a certain 
period of time, and then changes to fl uctuate 
with X positive for a time, until changing 
back to X negative again. Since the direction 
of circulation in the cell shown in Figure 2 
depends on the sign of X, this means that it 
changes after one or more revolutions, and 
this must occur when the motion comes to 
rest, rather like a spherical pendulum coming 

to rest near its topmost point, after which it 
falls back in the reverse direction. This occurs 
in the ‘body’ of the butterfl y, where X is small 
and the wings intersect.

The set of ‘butterfl y’ points that the solu-
tion endlessly approaches is now termed, 
appropriately, a ‘strange attractor’. It is 
not a steady, or periodic, state. Many non-
linear systems of equations are now known 
to have such strange attractors, and this 
one is known as the ‘Lorenz attractor’. A 
projection of this object (or more accurately, 
a numerical solution that approximates it) 
is shown in Figure 3a. The strange attractor 
has fractal structure, which means that if 
one examines a small part of this set with a 
microscope one sees endless detail that is 
repeated if one zooms in on a yet smaller part 
of this magnifi ed picture, and so on. Various 
numerical reproductions of this solution 
and the attractor to which it is drawn are 
available on a range of websites including 
Wikipedia, and the reader is invited to watch 
the development of this solution (and other 
solutions, choosing his/her own parameters) 
with time, at leisure.

warm  warm

(a) (b) 

vertical 

horizontal 
X < 0                                         X > 0

cool cool 

Figure 2 The Lorenz equations may be regarded as describing the temporal 
behaviour of fl ow of fl uid around a single cell, cooled from above and heated from 
below, with slippery non-conducting side walls. X denotes the strength and direction 
of this circulation
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Figure 3 The Lorenz attractor, projected onto the X–Z plane obtained from a 
particular numerical integration, showing the two ‘butterfl y’ wings or attractor basins. 
The points P0, P1

 
and P2

 
in (a) denote the steady-state solutions described in the text: P0

 is the state of zero motion at the origin, and P1, P2
 
the two steady recirculating states. 

The dark lines, loops and arrows in (a), (b) and (c) are described in the text
Source: Adapted from Palmer (1993b).
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It is worth emphasizing that the three 
steady solutions (equations 2 and 3) are all 
important in the structure of this ‘strange 
attractor’. The fi rst steady solution at the 
origin (equation 2) lies at the tail end of the 
butterfly attractor, and the curves of any 
non-steady solutions that pass through it 
denote the boundary of the attractor – the 
edge of the butterfl y wings. The two steady 
convective solutions (equation 3) lie near the 
centre of the circulations within each wing of 
the attractor.

If this integration is repeated with dif-
ferent initial conditions, or with parameter 
values that are similar to but differ from those 
used in the above integration, the results 
are similar. There is no limiting end state, or 
cyclic behaviour. Instead the system varies 
continuously without repetition, cycling 
within one ‘wing’ for an extended period 
of time, and then within the other wing. 
There is no basis for predicting how many 
cycles there may be in each wing before the 
transition occurs.

In his paper, Lorenz demonstrated that 
the solutions drawn to this attractor are un-
stable. Here this means that if one takes a 
solution through point (X1, Y1, Z1) and another 
through point (X2, Y2, Z2), where this second 
point lies arbitrarily close to the fi rst point, 
the two solutions may be almost identical 
for a while, but will eventually diverge to be 
totally different from and independent of 
each other, given suffi cient time. How long 
this takes will depend on how close together 
the two initial states were. This is the es-
sential defining property of chaos – that 
systems (or solutions representing them) 
lose all memory of their initial states, and 
are continuously unstable and sensitive to 
small changes or perturbations. It means that 
such systems are essentially unpredictable 
over suffi ciently long periods, regardless of 
how well one knows and understands the 
physics (equations) of the system, and the 
predictability of the system depends on how 
accurately one knows the initial conditions.

After an initial decade during which it 
was scarcely noticed, the Lorenz system 
has become the most famous and most 
studied of all non-linear systems with strange 
attractors. This is because of its simplicity 
and the bi-stable nature of the attractor 
itself. The single numerical example that 
he described, as above, is now the subject 
of numerous textbooks and mathematics 
courses (see, for example, Sparrow, 1982; 
1986; Drazin, 1992).

Lorenz applied these ideas to the prob-
lem of the predictability of weather fore-
casts. In the decade of the 1960s, numerical 
weather forecasting was developing rapidly 
in Princeton, USA, and Bracknell, UK, in 
particular, with optimism about the long-
term value of this methodology. Lorenz’s 
convective model is much simpler than any 
forecasting model, but the equations for 
the latter must be chaotic systems also, and 
hence possess the same unstable property. 
At the time, problems of adequateness of 
the models and accuracy of the initial obser-
vations were seen as limiting the predict-
ability, as now, but Lorenz’s results showed 
that there is an underlying limitation since 
the ideal observing system will still contain 
errors in the initial observations, implying 
an upper limit to predictability. As yet we 
do not know how long this is, but 10–14 days 
seems like a practical limit.

These equations have been used as an 
analogue for the weather system in other 
contexts. One example is the variability in the 
reliability of weather forecasts. Some fore-
casts are more reliable than others, and the 
Lorenz system may be used to demonstrate 
this as shown in Figure 3 (Palmer, 1993a). 
In Figure 3a, the initial state of the ‘Lorenz 
weather’ is taken to be within the dark circle 
at the upper left corner; integration of the 
equations with a variety of initial conditions 
within this circle constitutes an ‘ensemble 
forecast’, and gives the trajectories shown 
by the arrows and successive closed loops, 
showing that the forecast weather moves 
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over to the other wing of the attractor, and 
is confined to a small area. In Figure 3b, 
however, integration of the equations from 
a different region results in a broad spread 
of trajectories that spans both wings, and 
in Figure 3c, where the initial state is near 
the bottom centre, the spread of points is 
around the perimeter of both wings. Clearly, 
a weather forecast becomes increasingly 
diffi cult, and more unreliable, as the initial 
state moves from Figure 3a to Figure 3c. 
Most sophisticated weather-forecasting 
systems now use ensemble forecasts in this 
manner to estimate the reliability of the 
forecasts obtained.

A second application of this system is 
to provide insight into the dynamics of cli-
mate regimes. The two wings of the Lorenz 
‘weather system’ may be regarded as two 
climate regimes, and the system has two 
timescales: the ‘weather’ timescale taken 
to cycle around a wing, and the mean time 
spent in each wing before crossing over 
to the other regime. Palmer (1993b) has 
described integrations of equations (1) with 
weak external forcing added, representing, 
conceptually, forcing due to greenhouse 
warming, for example. The principal con-
clusion of this work is that the effect of the 
forcing does not change the nature of the 
climate regimes (or wings of the attractor) 
very much, but instead causes changes in 
the relative frequency in which the two 
regimes are occupied (these being equal in 

the unforced system (1)), and the relative 
mean length of time that the system spends 
in each regime.

Clearly, one must be careful not to push 
an analogue of this sort too far, but it is re-
markable how informative and influential 
these studies have been, and how much has 
grown from Ed Lorenz’s beautiful paper, 
which even today contains insight and points 
of expression that reward closer study.

Peter G. Baines
Melbourne University

Note
1. Ed Lorenz passed away on 16 April 2008, aged 90. 

An enviable innings.

References
Drazin, P.G. 1992: Nonlinear systems. Cambridge: 

Cambridge University Press, 317 pp.
Hide, R. 1958: An experimental study of thermal 

convection in a rotating fl uid. Philosophical Trans-
actions of the Royal Society of London A 250, 441–78.

Palmer, T.N. 1993a: Extended-range atmospheric 
prediction and the Lorenz model. Bulletin of the 
American Meteorological Society 74, 49–65.

— 1993b: A nonlinear dynamical perspective on climate 
change. Weather 48, 314–26.

Saltzman, B. 1962: Finite amplitude free convection as 
an initial value problem – I. Journal of the Atmospheric 
Sciences 19, 329–41.

Sparrow, C. 1982: The Lorenz equations: bifurcations, 
chaos and strange attractors. New York: Springer.

— 1986: The Lorenz equations. In Holden, A.V., editor, 
Chaos, Manchester: Manchester University Press, 
111–34.


