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Abstract: CSEOF analysis is conducted on the daily mean, maxi-

mum, and minimum temperatures measured at 60 Korea Meteor-

ological Administration stations in the period of 1979-2014. Each PC

time series is detrended and fitted to an autoregressive (AR) model.

The resulting AR models are used to generate 100 sets of synthetic

PC time series for the period of 1979-2064, and the linear trends are

added back to the resulting PC time series. Then, 100 sets of synthetic

daily temperatures are produced by using the synthetic PC time

series together with the The cyclostationary EOF (CSEOF) loading

vectors. The statistics of the synthetic daily temperatures are similar

to those of the original data during the observational period (1979-

2064). Based on the synthetic datasets, future statistics including

distribution of extreme temperatures and the length of four seasons

have been analyzed. Average daily temperature in spring is expected

to decrease by a small amount, whereas average temperatures in

summer, fall and winter are expected to increase. Standard deviation

of daily temperatures is expected to increase in all four seasons. The

Generalized Extreme Value and Generalized Pareto distributions of

extreme temperatures indicate that both warm and cold extremes are

likely to increase in summer, while only warm extremes are

predicted to increase significantly in winter. Thus, heat waves will

increase and cold waves will decrease in number in future. Spring

and fall will be shorter, whereas summer and winter will be longer. A

statistical prediction carried out in the present study may serve as a

baseline solution for numerical predictions using complex models.

Key words: Synthetic temperature, CSEOF, AR model, extreme

value distribution, seasonal length

1. Introduction

It is well known that surface temperatures on global and

regional scales have been increasing on a long-term scale due

to global warming (Houghton et al., 2001). Due to global

warming, observed annual mean temperature in Korea shows a

warming trend over the past five decades (Jung et al., 2002;

Kim and Roh, 2010). Not only the mean but also the

variability of temperature has also increased (Luterbacher et

al., 2004). Recent studies demonstrate that the occurrence of

extreme temperatures including cold waves and heat waves

has become more frequent (e.g., Schär et al., 2004). As reflected

in many recent studies, extreme events in the last century are

of great concern both regionally and globally (Easterling et al.,

2000; Bonsal et al., 2001; Walsh et al., 2001; Griffiths et al.,

2005; Beinston et al., 2007). Griffiths et al. (2005) reported

that change in mean temperatures could significantly affect the

occurrence of extreme temperatures. In general, frequency of

extremes exhibits a nonlinear relationship with changes in

mean temperatures, and small changes in mean temperatures

can result in significantly increased number of extreme events

(Mearns et al., 1984). On the other hand, Katz and Brown

(1992) demonstrated that change in the variance exerts stronger

impacts on extreme events than the mean of temperatures. 

In Korea, change in extreme temperatures has also been

observed during the recent decades. Occurrence of extreme

maximum temperatures, which are related to heat waves, tends

to show an increasing trend. In contrast, occurrence of extreme

minimum temperatures related to cold waves, shows a

decreasing trend (Jung et al., 2002). Due to global warming

and increased natural variability of temperature, it seems that

the timing and length of the four seasons in Korea has also

changed both in temperature and biology; earlier studies have

already addressed that seasons are changing globally and

regionally (Parkinson, 1994; Robenson, 2002; Meehl et al.,

2007; Dwyer et al., 2012; Lynch et al., 2016).

The purpose of this study is to explore changes in daily

temperatures, variance, and length of each season in South

Korea, and to investigate the extreme temperature distributions

in each season. Changes in the mean temperature, variance,

onset date and length, as well as extreme value distribution for

each season will be estimated for the next 50 years until 2064

based on the observed trends in the daily maximum, minimum,

and mean temperatures. Earlier studies on the temperature

change in Korea focused more on the annual mean tempera-

ture or the trend of temperature change. In the present study,

however, more detailed patterns of temperature change are

estimated by separating the four seasons. Furthermore, earlier

studies on extreme temperature events in Korea focused more

on the wintertime events. In this study, both summertime and

wintertime extreme events are probed. Detailed statistical

properties of extreme values are investigated by applying the

extreme value theory such as the General Extreme Value

(GEV) distribution and Generalized Pareto Distribution (GPD)

(Gilleland and Katz, 2005). A statistical approach based on the

KMA definitions of heat waves and cold waves are also used

Corresponding Author: Jangho Lee, School of Earth and Environ-
mental Sciences, Seoul National University, Seoul 08826, Korea.
E-mail: ilove9208@snu.ac.kr



2 ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES

to investigate both summertime and wintertime extreme tem-

perature events. 

Section 2 shows the method of analysis used in this study.

The cyclostationary EOF (CSEOF) technique is used as an

important method of research, which allows a detailed

representation of individual physical evolutions (Kim and Roh,

2010; Kim et al., 2013a, 2013b, 2014). The CSEOF method is

useful for creating synthetic datasets, which are physically and

statistically consistent with observational data (Kim and Wu,

1999). Hundred synthetic datasets will be constructed until

2064 based on the KMA observational data. Section 3a pre-

sents the results of CSEOF analysis with statistical comparisons

between the synthetic datasets and the observational data.

Synthetic datasets are validated through these statistical com-

parisons. In Section 3b, statistics including GEV and GPD

distributions of the synthetic datasets for the present and the

future periods will be presented and compared for the purpose

of addressing future change in the statistics of daily tem-

peratures. Summary and conclusions follow in section 4.

2. Data and Method of Analysis

a. Data

Data used in this study are the daily maximum, minimum

and average temperature measurements at 60 Korea Meteor-

ological Administration (KMA) stations during 1979-2014.

The KMA stations are distributed fairly evenly over the

southern part of the Korean Peninsula. A 365-day calendar is

used by removing February 29 in the leap years.

b. CSEOF analysis

The primary analysis technique used in the present study is

cyclostationary empirical orthogonal function (CSEOF) analysis

(Kim et al., 1996; Kim and North, 1997; Kim et al., 2015).

This technique writes space-time data in the form

(1)

where Bn(r,t) are called cyclostationary loading vectors

(CSLVs), Tn(t) are called principal component (PC) time

series, and r, t, n, D denote space, time, mode number and data

interval, respectively. The crucial motivation for carrying out

CSEOF analysis is to decompose data into a number of

temporally evolving physical processes, Bn(r,t), together with

their amplitude time series, Tn(t). Unlike conventional EOF

analysis, each physical process is rendered as temporally

evolving spatial patterns in CSEOF analysis. Further, CSLVs

are periodic in time:

, (2)

where d is called the nested period. This is more appropriate

representation of physical processes and facilitates the analysis

addressed below. 

c. Autoregressive (AR) modeling

Each PC time series is first detrended and is modeled as an

AR process (Newton, 1988), that is,

(3)

where the trend, trn(t), is removed from each PC time series, i.e.,

(4)

Note that p is called an order,  are re-

gression coefficients, and ε(t) is a white noise process with a

standard deviation σ. Then,  is referred to as an AR

process and (2) is symbolically written as .

An AR modeling is to identify p, , and σ such that the

statistical properties of the model become identical with those

of the original time series . 

d. Prediction

Using the identified AR model, synthetic data can be

generated as follows:

(5)

where the hat sign signifies that the quantity is an estimation.

In (5), { } is assumed zero and  is

estimated from a random value of a white-noise process 

with variance σ2. This procedure is continued until a sufficient

number of time series is generated to cover the time period

D + R, where R is the prediction interval abutting the data

interval D. Typically the first D values of the estimated time

series are discarded so that the effect of arbitrary initial

conditions is eliminated. Then, the removed trend is added

back to the estimated PC time series, that is,

(6)

Finally, prediction data is constructed via:

(7)

Note that the estimated PC time series is used together with the

loading vectors identified from CSEOF analysis of the KMA

data. The resulting prediction data in (7) is consistent with the

observational data both physically and statistically.

3. Results

a. Validation of synthetic datasets

CSEOF analysis was conducted on the KMA daily tem-
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peratures using the nested period of 365 days. By using the

nested period of 365 days, we resolve any physical evolutions

during the entire year. Figures 1 and 2 show the loading

vectors and PC time series (red curves) of the first two CSEOF

modes. The loading vector and the amplitude time series

indicate that the first CSEOF mode is the annual cycle of daily

maximum temperature in Korea and the second CSEOF mode

is associated with regional warming. The amplitude of the

annual cycle fluctuates by about ± 10% throughout the record

period. It shows a typical seasonal variation of temperature

throughout the year in Korea. The second CSEOF mode

exhibits a conspicuous trend, which suggests that this mode is

associated with warming of anthropogenic origin. As can be

seen in the corresponding loading vector, the effect of warming

is not uniform throughout the year. Rather, cooling is fre-

quently observed in March through June and briefly in

November and December.

Synthetic time series were generated by using (5) and (6).

Table 1 shows the AR order and noise variance for the first 10

PC time series. AR coefficients can be determined without any

ambiguity from the PC time series once the AR order is given.

Figure 2 shows the 100 synthetic time series of the first two

PC time series over the period of 1979-2014. As can be seen in

the figure, the magnitude of fluctuations is reasonably similar

between the original and the synthetic time series. As should

be expected, the trend of the original PC time series is nearly

identical with those of the synthetic time series, which implies

that the statistical properties of the original PC time series are

Fig. 2. (a) The first PC time series of daily maximum temperature at the 60 KMA stations (red), 100 synthetic time
series (blue), and one synthetic time series (green); (b, c) the mean and standard deviation of the first PC time series
(red) and those of the 100 synthetic time series (black). (d, e, f) Same as (a, b, c) except for the second PC time series.

Fig. 1. The loading vector of the daily maximum temperatures averaged over the 60 KMA stations: (a) the
first CSEOF mode, and (b) the second CSEOF mode.
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faithfully reproduced in the synthetic time series. 

In the manner described above, synthetic PC time series are

generated for the first 20 CSEOF modes; the first 20 CSEOF

modes explain more than 90% of the total variability of KMA

daily temperatures. A total of 100 sets of synthetic PC time

series are produced in order to calculate the GPD and GEV

distributions of extreme events with confidence. Then,

synthetic daily maximum temperatures at the KMA stations

are produced based on the 20 CSEOF modes by using (7). As

can be seen in Fig. 3, the mean and standard deviation derived

from the 100 synthetic daily maximum temperatures averaged

over the KMA stations are nearly identical with those of the

original data; each synthetic dataset seems to possess statistical

properties similar to the original data. 

While natural variability including Pacific Decadal Oscilla-

tion, Arctic Oscillation and El Niño Southern Oscillation can

contribute to the local warming or cooling, its contribution to

the warming mode should not be significant. In order to assess

the contamination of the warming mode by natural variability,

CSEOF analysis was conducted on longer (1961-2014) records

at 15 KMA stations. As can be seen in Fig. 4, both the loading

vector and the PC time series of the second CSEOF mode are

similar to those based on a shorter (1979-2014) record; cor-

relation for the loading vector is 0.82 and that for the PC time

series is 0.98. The slope of the trend line based on the longer

record is slightly less than that based on the shorter record;

they are 2.25 × 10−2 and 3.05 × 10−2 per year, respectively.
Thus, the difference in the amplitude can be 0.8 in a century.

This implies that mean seasonal temperature can be off by

0.41, 0.26, 0.42, and 0.29 in winter, spring, fall, and winter,

respectively. While this difference is not quite negligible, it is

justifiable in the context of the statistical nature of the present

study. 

Figure 5 shows the temperature increase between the two

periods, 2005-2014 and 1979-1988, from the KMA data and

the reconstruction data based on the second CSEOF mode. As

seen in the figure, the second CSEOF mode faithfully

describes the trend in the actual data at all 60 KMA stations.

The average temperature increases throughout all seasons.

Temperature increase is low in spring, while it is relatively

high in other seasons. The sign of change is nearly uniform

throughout the Korean Peninsula, suggesting that the second

mode characterizes a wide scale temperature change. In fact,

the PC time series is highly correlated with that of the

warming mode in Kim and Roh (2010); the warming mode in

Kim and Roh was shown to represent a continental-scale

warming (see Fig. 7 in Kim and Roh, 2010). 

Fig. 4. (a) The loading vector and (b) PC time series of the KMA
daily mean temperatures based on 1961-2014 record (red) and
1979-2014 record (blue). The black trend line is for the 1961-2014
record and the red and blue trend lines are for the two records for
the period of 1979-2014.

Table 1. Values for order (p) and error variance (σ
2
) for the first 10 PC

time series.

Max T Mean T Min T

p σ
2

p σ
2

p σ
2

PC 1 28 0.0013 28 0.0016 28 0.0002

PC 2 25 0.0041 25 0.0036 25 0.0034

PC 3 5 0.0072 27 0.0009 28 0.0017

PC 4 28 0.0010 25 0.0017 27 0.0009

PC 5 33 0.0005 7 0.0062 8 0.0107

PC 6 5 0.0056 28 0.0011 27 0.0006

PC 7 27 0.0005 6 0.0031 11 0.0033

PC 8 4 0.0020 42 0.0001 28 0.0012

PC 9 25 0.0059 25 0.0035 28 0.0007

PC 10 27 0.0003 5 0.0029 27 0.0006

Fig. 3. (a) Mean and (b) standard deviation of daily maximum
temperatures observed and averaged over 1979-2014 period at the
60 KMA stations (red), and those derived from the 100 synthetic
datasets in the same period (black).
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b. Future statistics

Figure 6 shows the extended synthetic PC time series over

the period of 1979-2064. The envelope of the 100 synthetic

time series shows a weak linear trend for the first CSEOF

mode and a strong linear trend for the second CSEOF mode.

Fig. 5. (a) Difference in observed average temperature between 1979-1988 period and 2005-2014 period; (b) same for the
reconstructed data using the second CSEOF mode. Each season is divided according to months (Spring: March, April, May;
Summer: June, July, August; Fall: September, October, November; Winter: December, January, February).

Fig. 6. (a) The first PC time series of the daily maximum temperatures at the 60 KMA stations (red), 100 synthetic time series
(blue) and one synthetic time series (green) extended until 2064; (b, c) the mean and standard deviation of the first PC time series
(red) and those of the 100 synthetic time series from 2029 to 2064 (black). (d, e, f) Same as (a, b, c) except for the second PC time
series.
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As seen in the figure, the amplitude of the annual cycle

decreases slightly in time, while the amplitude of the warming

increases significantly (Kim and Roh, 2010); the envelope of

the 100 synthetic time series clearly shows the trend. These

modes indicate that the amplitude of the annual cycle will

become gradually weaker as warming proceeds further in

future. The mean of synthetic time series also confirms these

trends; the mean of the first CSEOF mode (annual cycle mode)

in the future period (2029-2064) is less than that in the record

period (1979-2014), while that of the second mode (warming

mode) is much stronger in the future period. 

Figure 7 shows the climatological cycle of temperature for

the synthetic data in comparison with that of the KMA data.

As seen in the figure, the annual temperature evolution in the

synthetic datasets is similar to that of the KMA data in the

1979-2014 period. On the other hand, the annual temperature

evolution of the synthetic datasets in the 2029-2064 is

remarkably different from that of the KMA data. In the future

Fig. 7. The annual (or climatological) cycle for daily maximum, mean, and minimum temperatures averaged over all the 60 KMA
stations: KMA observations (black), 100 synthetic datasets in 1979-2014 (blue) and 100 synthetic datasets in 2029-2064 (red).

Fig. 8. The mean and standard deviation of maximum temperatures (upper), minimum temperatures (middle), and average
temperatures (lower): observation in 1979-2014 (black), 100 synthetic datasets in 1979-2014 (blue) and in 2029-2064 (red). Panels
(a)-(d) represent spring (3/1-5/30), summer (6/1-8/30), fall (9/1-11/30), and winter (12/1-2/28), respectively. 
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period (2029-2064), a significant increase in the daily maxi-

mum temperature is expected in winter and in fall, while the

daily maximum temperatures in spring and summer do not

exhibit any significant change. On the other hand, variance in

the future annual evolution of daily maximum temperature is

expected to increase substantially throughout the year. 

Figure 8 shows the future changes in the mean and variance

for daily maximum, mean, and minimum temperatures in each

season. As can be seen in the figure, seasonal average tem-

perature is predicted to increase in summer, fall and winter,

and is expected to decrease in spring. The standard deviation

of temperatures is predicted to rise in all seasons, which is

already evident in Fig. 7. Spring is the only season to be

predicted cooler. Future warming is highest in fall. While the

temperature increase in summer is relatively insignificant, the

increase in its standard deviation is remarkable; extreme hot

events may occur more often in summer in future. While the

standard deviation is expected to increase remarkably in

summer, it is noted that the standard deviation of winter

temperature is still greater than that of summer temperature.

Springtime cooling is slightly weaker than shown in Fig. 8

when the 1961-2014 daily temperatures are used, but the

difference is less than half a degree (figure not shown).

In Fig. 9, the histograms of maximum, average, and

minimum daily temperature show similar trends as in Fig. 8. In

spring, a small amount of cooling occurs in future, while

warming occurs in other seasons. Note that the summer

histogram becomes wider in both directions, while fall and

winter histograms become shifted toward the warm side. This

indicates that occurrence of extreme hot events will increase in

future in summer, fall and winter, whereas extreme cold events

will increase in summer but decrease in fall and winter. 

The occurrence of extreme hot/cold events is portrayed in

Table 2. Extreme events defined by both the KMA criteria and

the 2σ (standard deviation) criteria are shown in Table 2; note
that the KMA criteria and the standard-deviation criteria are

slightly different in terms of the extreme values. In summer,

extreme hot events tend to increase significantly in future,

Fig. 9. The histograms of daily temperatures derived from the 100 synthetic datasets during 1979-2014 (blue), 1979-2064
(black), and 2029-2064 (red). The four columns represent the spring (3/1-5/30), summer (6/1-8/30), fall (9/1-11/30), and
winter (12/1-2/28), respectively. The ordinate represents the average frequency of occurrence for each season. 

Table 2. Percentage of extreme events in the observational period and
future period based on the KMA criteria and the 2σ(μ ± 2σ) criteria.
The KMA criteria of heat wave is maximum temperature over 33

o
C

and of cold wave is minimum temperature below −12
o
C.

Summer 
1979-2014

Summer
2029-2064

Winter
1979-2014

Winter
2029-2064

Mean (μ) 27.15
o
C −2.86

o
C

Standard deviation 
(σ)

3.31 4.75

KMA criteria 33oC −12oC

% of occurrence 3.35% 10.67% 3.43% 2.48%

% of change +219% −28%

μ ± 2σ criteria 33.8oC −12.4oC

% of occurrence 1.90% 4.32% 4.02% 2.96%

% of change +127% −26%
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while extreme cold events tend to decrease slightly in winter.

The occurrence of heat waves in summer tends to increase by

~220% according to the KMA criteria (maximum temperature

over 33oC), and by ~130% according to the μ + 2σ criteria. In

contrast, the occurrence of cold waves in winter tends to

decrease by ~28% according to the KMA criteria (minimum

temperature below –12oC) and by ~26% according to the μ −
2σ criteria. This is consistent with other results in this study. 

The probability distribution of extreme values is shown in

Fig. 10. Both the GEV distribution and the GPD are displayed

in the figure. The probability density function of the GEV

distribution is given by

(8)

where

, (9)

and

. (10)

Here, μ is the relocation parameter, σ > 0 is the scale

parameter, and ξ is the shape parameter. The probability

function of the GPD distribution is defined by

, (11)

where

. (12)

Both the GEV and GPD distributions show similar distri-

butions for the warm and cold extremes in summer and winter.

For GPD distribution, extreme events are defined as the

temperatures exceeding 2σ range (μ + 2σ). For GEV distribu-

tion, block extrema (maximum and minimum temperatures

fGEV x;μ σ ξ, ,( ) 1

σ
---t x( ) 1 ξ+( )–

e
t x( )–
,=

t x( )

1 ξ
x μ–

σ
----------⎝ ⎠
⎛ ⎞+⎝ ⎠

⎛ ⎞
1 ξ⁄–

for ξ 0≠

x μ–

σ
----------–⎝ ⎠
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⎪
⎪
⎧

=

x μ σ ξ⁄–> for ξ 0>
x μ σ ξ⁄–< for ξ 0<⎩

⎨
⎧

fGPD x;ξ μ σ, ,( ) 1

σ
--- 1

ξ x μ–( )
σ
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⎛ ⎞

1

ξ
--- 1––

=

x μ≥               for ξ 0≥
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⎨
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Fig. 10. General Extreme Value (GEV) distribution and Generalized Pareto Distribution (GPD) of cold extremes (first and
third columns) and warm extremes (second and fourth columns) during summer (6/1-8/31; first and second columns) and
winter (12/1-2/28; third and fourth columns) based on the 100 synthetic datasets: observational period 1979-2014 (blue)
and future period 2029-2064 (red). Warm and cold extreme are determined by the μ ± 2σ values of the present data.
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each year) are used. In order to facilitate a comparison, GEV

distributions are plotted for values exceeding 2σ. As seen in

the figure, both the warm and cold extremes will be more

frequent in summer. In winter, warm extremes will be more

frequent and anomalous, while occurrence of cold extremes,

which stands for cold waves, will be similar to that in the

present period. 

Figure 11 shows the predicted yearly occurrence of heat

waves and cold waves in Korea; heat and cold waves are

defined according to the KMA criteria. Heat waves will

increase significantly in number in future, while cold waves

will decrease slightly in number. Note that the changes in these

two extreme events are not symmetric at all due to regional

warming and seasonally distinct change in temperature vari-

ability. The rate of increase in heat waves is much greater than

the rate of decrease in cold waves. The asymmetric trend is

obvious, since the average temperature will be higher in future

period due to global warming, and also the rate of increase in

temperature variability (standard deviation) will be higher in

summer. 

Figure 12 and Table 3 show the future change in the onset

date and length of each season. Season is defined according to

the KMA classification, which is based on daily temperatures.

According to the KMA classification, spring starts from the

day when average temperature becomes higher than 5oC and

afterward in the season. Summer starts from the day when

average temperature becomes higher than 20oC and afterward

in the season. Fall starts from the day when average tem-

perature becomes lower than 20oC and afterward in the season.

Winter starts from the day when average temperature becomes

lower than 5oC and afterward in the season. The onset dates of

the four seasons will be delayed by a few days according to the

prediction datasets. Summer and winter, particularly summer,

will be longer, while spring and fall, particularly fall, will

become shorter.

4. Summary and Conclusions

Daily maximum, minimum, and average temperatures over

the last 36 years (1979-2014) measured at the 60 KMA

Fig. 11. Current and future trends of heat waves and cold waves in
Korea. Days with daily maximum temperature exceeding 33oC for
two or more consecutive days are defined as days of heat waves
(red). Days with daily minimum temperatures below −12oC for two
or more consecutive days or days with a temperature reduction of
more than 10

o
C per day from a minimum temperature of 3

o
C or

lower are defined as days of cold waves.

Fig. 12. (upper panel) The seasonal cycle of daily average
temperatures. The color bars in the upper row depict the lengths of
the seasons in 1979-2014, while those in the lower row describe the
lengths of the seasons in 2029-2064. Each color represents the
duration of a season: spring (yellow), summer (red), fall (green),
and winter (blue). The seasonal cycles have been smoothed
significantly in order to apply the KMA definitions of seasons.
(lower panel) Plot of the length of each season during the
observational period (1979-2014, blue) and the future period (2029-
2064, red).

Table 3. Mean and standard deviation of the length of each season
derived form the 100 synthetic datasets. And start of each season also
derived form 100 synthetic datasets. Seasonal criteria follow KMA
criteria.

Mean of Length
(Days)

Standard
Deviation

Start of Season
(Date)

Spring
(1979-2014)

100.02 3.52 3/26

Spring
(2029-2064)

 89.03 2.51 4/1

Summer
(1979-2014)

 84.37 3.85 7/3

Summer
(2029-2064)

121.46 3.79 6/27

Fall (1979-2014)  97.40 3.88 9/27

Fall (2029-2064)  68.62 4.85 10/27

Winter
(1979-2014)

 82.40 3.48 1/4

Winter
(2029-2064)

 85.87 4.18 1/6
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stations in South Korea were analyzed via the CSEOF

technique to construct synthetic datasets until 2064. The

synthetic datasets were constructed by using the first 20

CSEOF modes, which explain more than 90 percent of the

total variability. Synthetic PC time series were constructed

from the autoregressive (AR) models fitted to the detrended

PC time series and the linear trend in each PC time series.

Then, daily temperatures for the future 50 years (2015-2064)

have been studied using 100 synthetic datasets.

The accuracy of the synthetic datasets was validated against

the original data in terms of the proximity of the underlying

statistical properties. Both the mean and variance of the

synthetic datasets were similar to those of the observational

data. Also, the envelope of the 100 synthetic datasets in 1979-

2014 showed a trend similar to that of the observational data. 

In the future period (2029-2064), the first CSEOF mode

(seasonal cycle) becomes weaker while the second CSEOF

mode (warming) becomes stronger. According to the synthetic

datasets, temperature is increased in summer, fall and winter

while it is decreased slightly in spring. It seems that delay

(Dwyer et al., 2012; Meehl et al., 2007) and weakening of the

seasonal cycle (Serreze et al., 2009; Lynch et al., 2016) offers a

plausible explanation for the springtime cooling in Korea;

unfortunately, this cannot be confirmed based on a rather

statistical approach in the present study.

On the other hand, standard deviation of daily temperatures

increases in each season; the amount of increase in the

standard deviation is greatest in summer, while the actual

standard deviation of daily temperature remains to be greatest

in winter both in the current and future periods. Histograms of

daily temperatures are shifted toward the positive side in

summer, fall, and winter; this indicates that warming will

persist in future. In spring, however, histogram expands in both

directions, suggesting that colder and warmer weathers will be

more frequent in future. 

From the 100 synthetic datasets, probability and frequency

of extreme events are predicted using the generalized extreme

value (GEV) distribution and the general Pareto distribution

(GPD). The GEV and GPD methods yield similar results. The

extreme value distribution as represented by GEV and GPD

shows that extreme hot events (heat waves) will be more

intense and more frequent, while extreme cold events (cold

waves) will be slightly less intense and less frequent. The

future trend of extreme events based on the KMA criteria for

heat/cold waves shows that heat wave events will increase

significantly in number, while cold wave events will decrease

slightly. These two trends, heat waves and cold waves, are not

symmetric at all due to the seasonally distinct change in the

mean and variance of daily temperatures. The increase in the

number of heat waves is larger than the number of reduction of

cold waves. 

The onset date and length of each season according to the

KMA classification also change significantly in future. Summer

and winter will become longer, while spring and fall will

become shorter.

An important caveat in the present study is that (1) the linear

trend in the PC time series will continue in future, and (2) the

CSEOF loading vector will not change in any significant

manner in future. It is impossible to ascertain that these two

assumptions will be rigorously met in future. In fact, model

predictions also suffer from unknown future forcing and/or

uncertainty arising from unaffirmed model physics. Therefore,

this study may be viewed as a simplistic prediction on future

trend of daily temperature and its variability based on

observational data, and serves as a benchmark solution for

more complex numerical predictions.
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